若等式sinx+siny=sin(x+y)成立,則必有


  1. A.
    x∈R,y∈R
  2. B.
    x=y=nπ,(n∈Z)
  3. C.
    x=-y
  4. D.
    x,y,x+y中,至少有一個為2nπ(n∈Z)
D
分析:先利用兩角和公式對sin(y+x)展開,整理求得siny(1-cosx)+sinx(1-cosy)=0,進而可判斷x,y,x+y中,至少有一個為2nπ(n∈Z).
解答:解法一:根據(jù)已知:sin(y+x)=sinycosx+cosysinx=siny+sinx
化簡得:siny(1-cosx)+sinx(1-cosy)=0
+=0
×()=0

上式成立,所以必有,中至少有一個為nπ(n∈Z)
即x,y,x+y中,至少有一個為2nπ(n∈Z)
故選D
解法二:排除法:ABC很容易找到反例
點評:本題主要考查了三角函數(shù)中的恒等變換應用.考查了學生演繹推理和創(chuàng)造性能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

2、下列有關(guān)命題的說法正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若等式sinx+siny=sin(x+y)成立,則必有( 。
A、x∈R,y∈RB、x=y=nπ,(n∈Z)C、x=-yD、x,y,x+y中,至少有一個為2nπ(n∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:013

若等式sinx+siny=sin(x+y)成立,則必有(    )

AxRyR      Bx,y,x+y中,至少有一個為2(nZ)

Cx=y=(nZ)     Dx=y

 

查看答案和解析>>

科目:高中數(shù)學 來源:數(shù)學教研室 題型:013

若等式sinx+siny=sin(x+y)成立,則必有(    )

AxR,yR      Bxy,x+y中,至少有一個為2(nZ)

Cx=y=(nZ)     Dx=y

 

查看答案和解析>>

同步練習冊答案