設(shè)是一個離散型隨機變量,其概率分布列如下:則           .
ξ
-1
0
1
P
0.5


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知某運動員每次投籃命中的概率都為40%,現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù):
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為(  )
A.0.35  B.0.25 C.0.20  D.0.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一個袋中有10個大小相同的黑球、白球和紅球,已知從袋中任意摸出一個球,得到黑球的概率是;從袋中任意摸出2個球,至少得到1個白球的概率是
(1)求袋中白球的個數(shù);
(2)若將其中的紅球拿出,從剩余的球中一次摸出3個球,求恰好摸到2個白球的概率;
(3)在(2)的條件下,一次摸出3個球,求取得白球數(shù)X的數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在區(qū)間(0,1)中隨機地取出兩個數(shù),則兩數(shù)之和小于的概率是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在一次數(shù)學(xué)考試中, 第14題和第15題為選做題。規(guī)定每位考生必須且只須在其中選做一題. 設(shè)4名考生選做這兩題的可能性均為.
(Ⅰ)其中甲、乙2名學(xué)生選做同一道題的概率;
(Ⅱ)設(shè)這4名考生中選做第15題的學(xué)生數(shù)為個,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分8分)
名男生和名女生中任選人參加演講比賽.設(shè)隨機變量表示所選人中女生的人數(shù). 
(Ⅰ) 求的分布列;(結(jié)果用數(shù)字表示)
(Ⅱ)求的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

有三位學(xué)生參加兩項不同的競賽,則每位學(xué)生最多參加一項競賽,每項競賽只許有一位學(xué)生參加的概率為            .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
一個袋子中裝有黃、黑兩色混合在一起的豆子20公斤(兩種豆子的大小相同),F(xiàn)從中隨機抽取50粒豆子進行發(fā)芽試驗,結(jié)果如下:發(fā)芽的黃、黑兩種豆子分別是27粒和16粒,不發(fā)芽的黃、黑兩種豆子分別是3粒和4粒。
(Ⅰ)估計黃、黑兩種豆子分別有多少公斤,以及整個袋子中豆子的發(fā)芽率;
(Ⅱ)能不能有90%的把握認為發(fā)芽不發(fā)芽與豆子的顏色有關(guān)?
(Ⅲ)從3粒黃豆和2粒黑豆中任取2粒,求這2粒豆子中黑豆數(shù)X的分布列和期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

一個盒內(nèi)有大小相同的2個紅球和8個白球,現(xiàn)從盒內(nèi)一個一個地摸取,假設(shè)每個球摸到的可能性都相同. 若每次摸出后都不放回,當拿到白球后停止摸取,則摸取次數(shù)的數(shù)學(xué)期望是         .

查看答案和解析>>

同步練習冊答案