如圖,在矩形區(qū)域ABCD的A,C兩點處各有一個通信基站,假設其信號覆蓋范圍分別是扇形區(qū)域ADE和扇形區(qū)域CBF(該矩形區(qū)域內(nèi)無其他信號來源,基站工作正常).若在該矩形區(qū)域內(nèi)隨機地選一地點,則該地點無信號的概率是
 
考點:幾何概型
專題:概率與統(tǒng)計
分析:求出有信號的區(qū)域面積,利用幾何概型的概率公式進行計算即可得到結(jié)論.
解答: 解:扇形區(qū)域ADE和扇形區(qū)域CBF的面積之和為
1
4
×π×12×2=
π
2
,矩形的面積S=2,
則該地點無信號的面積S=2-
π
2
,
則對應的概率P=
2-
π
2
2
=1-
π
4
,
故答案為:1-
π
4
點評:本題主要考查幾何概型的概率的計算,平面圖形面積的計算,根據(jù)條件求出對應的面積是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-ax2-bx-a2,x∈R,a,b為常數(shù).
(1)若函數(shù)f(x)在x=1處有極大值-14,求實數(shù)a,b的值;
(2)若a=0,方程f(x)=2恰有3個不相等的實數(shù)解,求實數(shù)b的取值范圍;
(3)若b=0,函數(shù)f(x)在(-∞,-1)上有最大值,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面上兩點M(-1,0),N(1,0),若曲線上存在點P使得|PM|+|PN|=4,則稱該曲線為“1?
1
2
曲線”,下列曲線中是“1?
1
2
曲線”的是
 
(將正確答案的序號寫到橫線上)
①x2+y2=4
x2
3
+
y2
4
=1
x2
25
-
y2
16
=1
④y2=8x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2對任意的x∈[a,a+l],不等式f(x+a)≥4f(x)恒成立,則實數(shù)a的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x,y為正實數(shù),下列命題:
①若x2-y2=1,則x-y<1;
②若
1
y
-
1
x
=1,則x-y<1;
③若
x
-
y
=1,則x-y<1.
其中的真命題有
 
.(寫出所有真命題的編號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個體積為
1
6
的三棱錐的三視圖如圖所示,其俯視圖是一個等腰直角三角形,則這個三棱錐左視圖的面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知y=
3-x
+2
x-1
,則y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

《張丘建算經(jīng)》卷上第22題--“女子織布”問題:某女子善于織布,一天比一天織得快,而且每天增加的數(shù)量相同.已知第一天織布5尺,30天共織布390尺,則該女子織布每天增加(  )
A、
4
7
B、
16
29
C、
8
15
D、
16
31

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某教育主管部門到一所中學檢查學生的體質(zhì)健康情況.從全體學生中,隨機抽取12名進行體質(zhì)健康測試,測試成績(百分制)以莖葉圖形式表示如圖所示.根據(jù)學生體質(zhì)健康標準,成績不低于76的為優(yōu)良.
(Ⅰ)寫出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(Ⅱ)將頻率視為概率.根據(jù)樣本估計總體的思想,在該校學生中任選3人進行體質(zhì)健康測試,求至少有1人成績是“優(yōu)良”的概率;
(Ⅲ)從抽取的12人中隨機選取3人,記ξ表示成績“優(yōu)良”的學生人數(shù),求ξ的分布列及期望.

查看答案和解析>>

同步練習冊答案