由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y="f" -1(x)能確定數(shù)列{bn},bn=" f" –1(n),若對(duì)于任意nÎN*,都有bn=an,則稱(chēng)數(shù)列{bn}是數(shù)列{an}的“自反數(shù)列”.
(1)若函數(shù)f(x)=確定數(shù)列{an}的自反數(shù)列為{bn},求an;
(2)已知正數(shù)數(shù)列{cn}的前n項(xiàng)之和Sn=(cn+).寫(xiě)出Sn表達(dá)式,并證明你的結(jié)論;
(3)在(1)和(2)的條件下,d1=2,當(dāng)n≥2時(shí),設(shè)dn=,Dn是數(shù)列{dn}的前n項(xiàng)之和,且Dn>log a (1-2a)恒成立,求a的取值范圍.

(1)an=
(2)Sn=,證明略
(3)0<a<–1

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),若函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),則稱(chēng)數(shù)列{bn}是數(shù)列{an}的“反數(shù)列”.
(1)若函數(shù)f(x)=2
x
確定數(shù)列{an}的反數(shù)列為{bn},求{bn}的通項(xiàng)公式;
(2)對(duì)(1)中{bn},不等式
1
bn+1
+
1
bn+2
+…+
1
b2n
1
2
loga(1-2a)
對(duì)任意的正整數(shù)n恒成立,求實(shí)數(shù)a的取值范圍;
(3)設(shè)cn=
1+(-1)λ
2
3n+
1-(-1)λ
2
•(2n-1)(λ為正整數(shù))
,若數(shù)列{cn}的反數(shù)列為{dn},{cn}與{dn}的公共項(xiàng)組成的數(shù)列為{tn},求數(shù)列{tn}前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列bn,bn=f-1(n)若對(duì)于任意n∈N*都有bn=an,則稱(chēng)數(shù)列{bn}是數(shù)列{an}的“自反函數(shù)列”
(1)設(shè)函數(shù)f(x)=
px+1
x+1
,若由函數(shù)f(x)確定的數(shù)列{an}的自反數(shù)列為{bn},求an
(2)已知正整數(shù)列{cn}的前項(xiàng)和sn=
1
2
(cn+
n
cn
).寫(xiě)出Sn表達(dá)式,并證明你的結(jié)論;
(3)在(1)和(2)的條件下,d1=2,當(dāng)n≥2時(shí),設(shè)dn=
-1
anSn2
,Dn是數(shù)列{dn}的前n項(xiàng)和,且Dn>loga(1-2a)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),若對(duì)于任意n?N*,都有bn=an,則稱(chēng)數(shù)列{bn}是數(shù)列{an}的“自反數(shù)列”.
(1)若函數(shù)f(x)=
px+1
x+1
確定數(shù)列{an}的自反數(shù)列為{bn},求an
(2)在(1)條件下,記
n
1
x1
+
1
x2
+…
1
xn
為正數(shù)數(shù)列{xn}的調(diào)和平均數(shù),若dn=
2
an+1
-1
,Sn為數(shù)列{dn}的前n項(xiàng)之和,Hn為數(shù)列{Sn}的調(diào)和平均數(shù),求
lim
n→∞
=
Hn
n

(3)已知正數(shù)數(shù)列{cn}的前n項(xiàng)之和Tn=
1
2
(Cn+
n
Cn
)
.求Tn表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•浦東新區(qū)一模)由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),若函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),則稱(chēng)數(shù)列{bn}是數(shù)列{an}的“反數(shù)列”.
(1)若函數(shù)f(x)=2
x
確定數(shù)列{an}的反數(shù)列為{bn},求bn;
(2)設(shè)cn=3n,數(shù)列{cn}與其反數(shù)列{dn}的公共項(xiàng)組成的數(shù)列為{tn}
(公共項(xiàng)tk=cp=dq,k、p、q為正整數(shù)).求數(shù)列{tn}前10項(xiàng)和S10
(3)對(duì)(1)中{bn},不等式
1
bn+1
+
1
bn+2
+…+
1
b2n
1
2
loga(1-2a)
對(duì)任意的正整數(shù)n恒成立,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=f(x)存在反函數(shù)y=f-1(x),由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),由函數(shù)y=f-1(x)確定數(shù)列{bn},bn=f-1(n),則稱(chēng)數(shù)列{bn}是數(shù)列{an}的“反數(shù)列”.
(1)若數(shù)列{bn}是函數(shù)f(x)=
x+1
2
確定數(shù)列{an}的反數(shù)列,試求數(shù)列{bn}的前n項(xiàng)和Sn;
(2)若函數(shù)f(x)=2
x
確定數(shù)列{cn}的反數(shù)列為{dn},求{dn}的通項(xiàng)公式;
(3)對(duì)(2)題中的{dn},不等式
1
dn+1
+
1
dn+2
+…+
1
d2n
1
2
log(1-2a)對(duì)任意的正整數(shù)n恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案