已知點D(0,-2),過點D作拋物線C1:x2=2py(p>0)的切線l,切點A在第二象限,如圖
(Ⅰ)求切點A的縱坐標(biāo);
(Ⅱ)若離心率為的橢圓恰好經(jīng)過切點A,設(shè)切線l交橢圓的另一點為B,記切線l,OA,OB的斜率分別為k,k1,k2,若k1+2k2=4k,求橢圓方程.
【答案】分析:(Ⅰ)設(shè)切點A(x,y),且,由切線l的斜率為,得l的方程為,再由點D(0,-2)在l上,能求出點A的縱坐標(biāo).
(Ⅱ)由得,切線斜率,設(shè)B(x1,y1),切線方程為y=kx-2,由,得a2=4b2,所以橢圓方程為,b2=p+4,由,由此能求出橢圓方程.
解答:解:(Ⅰ)設(shè)切點A(x,y),且,
由切線l的斜率為,得l的方程為,又點D(0,-2)在l上,
,即點A的縱坐標(biāo)y=2.…(5分)
(Ⅱ)由(Ⅰ) 得,切線斜率,
設(shè)B(x1,y1),切線方程為y=kx-2,由,得a2=4b2,…(7分)
所以橢圓方程為,且過,∴b2=p+4…(9分)
,∴,…(11分)
=
,b2=p+4代入得:p=32,所以b2=36,a2=144,
橢圓方程為.…(15分)
點評:本題考查切點的縱坐標(biāo)和橢圓方程的求法,解題時要認真審題,注意橢圓標(biāo)準方程,簡單幾何性質(zhì),直線與橢圓的位置關(guān)系,圓的簡單性質(zhì)等基礎(chǔ)知識.考查運算求解能力,推理論證能力;考查函數(shù)與方程思想,化歸與轉(zhuǎn)化思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點D(0,-2),過點D作拋物線C1:x2=2py(p>0)的切線l,切點A在第二象限,如圖
(Ⅰ)求切點A的縱坐標(biāo);
(Ⅱ)若離心率為
3
2
的橢圓
x2
a2
+
y2
b2
=1(a>b>0)
恰好經(jīng)過切點A,設(shè)切線l交橢圓的另一點為B,記切線l,OA,OB的斜率分別為k,k1,k2,若k1+2k2=4k,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知點D(0,-2),過點D作拋線C1:x2=2py(p>0)的切線l,切點A在第一象限,如圖.
(1)求切點A的縱坐標(biāo);
(2)若離心率為
3
2
的橢圓C:
y2
a 2
+
x2
b2
=1(a>b>0)恰好經(jīng)過切點A,設(shè)切線l交橢圓的另一點為B,記切線l,OA,OB的斜率分別為k,k2,k3,若2k1+k2=3k,求拋物線C1和橢圓C2的方程.
(3)設(shè)P、Q分別是(2)中的橢圓C2的右頂點和上頂點,M是橢圓C2在第一象限的任意一點,求四邊形OPMQ面積的最大值以及此時M點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃州區(qū)模擬)如圖,已知點D(0,-2),過點D作拋物線C1:x2=2py(p∈[1,4]的切線l,切點A在第二象限.
(1)求切點A的縱坐標(biāo);
(2)若離心率為
3
2
的橢圓
x2
a2
+
y2
b2
=1(a>b>c)恰好經(jīng)過A點,設(shè)切線l交橢圓的另一點為B,若設(shè)切線l,直線OA,OB的斜率為k,k1,k2,①試用斜率k表示k1+k2②當(dāng)k1+k2取得最大值時求此時橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省黃岡中學(xué)等八校高三第二次聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,已知點D(0,-2),過點D作拋物線C1:x2=2py(p∈[1,4]的切線l,切點A在第二象限.
(1)求切點A的縱坐標(biāo);
(2)若離心率為的橢圓+=1(a>b>c)恰好經(jīng)過A點,設(shè)切線l交橢圓的另一點為B,若設(shè)切線l,直線OA,OB的斜率為k,k1,k2,①試用斜率k表示k1+k2②當(dāng)k1+k2取得最大值時求此時橢圓的方程.

查看答案和解析>>

同步練習(xí)冊答案