(本小題共12分)

已知函數(shù)的圖象過(guò)點(diǎn),且在內(nèi)單調(diào)遞減,在上單調(diào)遞增。

(1)求的解析式;

(2)若對(duì)于任意的,不等式恒成立,試問(wèn)這樣的是否存在.若存在,請(qǐng)求出的范圍,若不存在,說(shuō)明理由;

 

【答案】

(1)f(x)= x3+x2-2x+即為所求.  --------------5分

(2)存在mm∈[0,1]附合題意

【解析】

試題分析:(1)∵,--------1分

由題設(shè)可知:sinθ≥1, ∴sinθ=1.------3分

從而a= ,∴f(x)= x3+x2-2x+c,而又由f(1)= c=.∴f(x)= x3+x2-2x+即為所求.  --------------5分

(2)由=(x+2)(x-1),

易知f(x)在(-∞,-2)及(1,+∞)上均為增函數(shù),在(-2,1)上為減函數(shù).

①當(dāng)m>1時(shí),f(x)在[m,m+3]上遞增,故f(x)max=f(m+3), f(x)min=f(m)

f(m+3)-f(m)=  (m+3)3+ (m+3)2-2(m+3)-m3m2+2m=3m2+12m+,

得-5≤m≤1.這與條件矛盾. ------------8分

② 當(dāng)0≤m≤1時(shí),f(x)在[m,1]上遞減, 在[1,m+3]上遞增

f(x)min=f(1), f(x)max=max{ f(m),f(m+3) },

f(m+3)-f(m)= 3m2+12m+=3(m+2)2>0(0≤m≤1)

f(x)max= f(m+3)∴|f(x1)-f(x2)|≤f(x)maxf(x)min= f(m+3)-f(1)≤f(4)-f(1)= 恒成立.

故當(dāng)0≤m≤1時(shí),原不等式恒成立.----------------11分

綜上,存在mm∈[0,1]附合題意---------------12分

考點(diǎn):本題考查了導(dǎo)數(shù)的運(yùn)用

點(diǎn)評(píng):導(dǎo)數(shù)本身是個(gè)解決問(wèn)題的工具,是高考必考內(nèi)容之一,高考往往結(jié)合函數(shù)甚至是實(shí)際問(wèn)題考查導(dǎo)數(shù)的應(yīng)用,求單調(diào)、最值、完成證明等,請(qǐng)注意歸納常規(guī)方法和常見(jiàn)注意點(diǎn).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

. (本小題共12分)已知橢圓E:的焦點(diǎn)坐標(biāo)為),點(diǎn)M()在橢圓E上(1)求橢圓E的方程;(2)O為坐標(biāo)原點(diǎn),⊙的任意一條切線與橢圓E有兩個(gè)交點(diǎn),求⊙的半徑。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年內(nèi)蒙古呼倫貝爾市高三第三次模擬考試文科數(shù)學(xué)試卷 題型:解答題

(本小題共12分)如圖,已知⊥平面,,是正三角形,,且的中點(diǎn)

 

 

(1)求證:∥平面;

(2)求證:平面BCE⊥平面

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年內(nèi)蒙古呼倫貝爾市高三第三次模擬考試文科數(shù)學(xué)試卷 題型:解答題

(本小題共12分)某中學(xué)的高二(1)班男同學(xué)有名,女同學(xué)有名,老師按照分層抽樣的方法組建了一個(gè)人的課外興趣小組.

(Ⅰ)求某同學(xué)被抽到的概率及課外興趣小組中男、女同學(xué)的人數(shù);

(Ⅱ)經(jīng)過(guò)一個(gè)月的學(xué)習(xí)、討論,這個(gè)興趣小組決定選出兩名同學(xué)做某項(xiàng)實(shí)驗(yàn),方法是先從小組里選出名同學(xué)做實(shí)驗(yàn),該同學(xué)做完后,再?gòu)男〗M內(nèi)剩下的同學(xué)中選一名同學(xué)做實(shí)驗(yàn),求選出的兩名同學(xué)中恰有一名女同學(xué)的概率;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年甘肅省天水市高三上學(xué)期第一階段性考試?yán)砜茢?shù)學(xué)卷 題型:解答題

(本小題共12分)

如圖,在正三棱柱ABC—A1B1C1中,點(diǎn)D是棱AB的中點(diǎn),BC=1,AA1=

(1)求證:BC1//平面A1DC;

(2)求二面角D—A1C—A的大小

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆黑龍江省高一上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題共12分)已知函數(shù)

(1)求函數(shù)圖象的對(duì)稱中心

(2)已知,,求證:.

(3)求的值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案