已知命題:p:對(duì)任意x∈R,總有|x|≥0,q:x=1是方程x+2=0的根;則下列命題為真命題的是( 。
A、p∧¬qB、¬p∧q
C、¬p∧¬qD、p∧q
考點(diǎn):復(fù)合命題的真假
專題:簡(jiǎn)易邏輯
分析:判定命題p,q的真假,利用復(fù)合命題的真假關(guān)系即可得到結(jié)論.
解答: 解:根據(jù)絕對(duì)值的性質(zhì)可知,對(duì)任意x∈R,總有|x|≥0成立,即p為真命題,
當(dāng)x=1時(shí),x+2=3≠0,即x=1不是方程x+2=0的根,即q為假命題,
則p∧¬q,為真命題,
故選:A.
點(diǎn)評(píng):本題主要考查復(fù)合命題的真假關(guān)系的應(yīng)用,先判定p,q的真假是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了了解一片經(jīng)濟(jì)林的生長(zhǎng)情況,隨機(jī)抽測(cè)了其中60株樹(shù)木的底部周長(zhǎng)(單位:cm),所得數(shù)據(jù)均在區(qū)間[80,130]上,其頻率分布直方圖如圖所示,則在抽測(cè)的60株樹(shù)木中,有
 
株樹(shù)木的底部周長(zhǎng)小于100cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,直線x+2y-3=0被圓(x-2)2+(y+1)2=4截得的弦長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某地區(qū)中小學(xué)學(xué)生的近視情況分布如圖1和圖2所示,為了解該地區(qū)中小學(xué)生的近視形成原因,用分層抽樣的方法抽取2%的學(xué)生進(jìn)行調(diào)查,則樣本容量和抽取的高中生近視人數(shù)分別為( 。
A、200,20
B、100,20
C、200,10
D、100,10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=
1
2
(|x-a2|+|x-2a2|-3a2),若?x∈R,f(x-1)≤f(x),則實(shí)數(shù)a的取值范圍為( 。
A、[-
1
6
,
1
6
]
B、[-
6
6
,
6
6
]
C、[-
1
3
,
1
3
]
D、[-
3
3
,
3
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,若輸出k的值為6,則判斷框內(nèi)可填入的條件是( 。
A、s>
1
2
B、s>
3
5
C、s>
7
10
D、s>
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面向量
a
=(1,2),
b
=(4,2),
c
=m
a
+
b
(m∈R),且
c
a
的夾角等于
c
b
的夾角,則m=(  )
A、-2B、-1C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)如下樣本數(shù)據(jù),得到回歸方程
y
=bx+a,則(  )
x345678
y4.02.5-0.50.5-2.0-3.0
A、a>0,b>0
B、a>0,b<0
C、a<0,b>0
D、a<0,b<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2,g(x)=2elnx(x>0)(e為自然對(duì)數(shù)的底數(shù)).
(1)求F(x)=f(x)-g(x)(x>0)的單調(diào)區(qū)間及最小值;
(2)是否存在一次函數(shù)y=kx+b(k,b∈R),使得f(x)≥kx+b且g(x)≤kx+b對(duì)一切x>0恒成立?若存在,求出該一次函數(shù)的表達(dá)式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案