橢圓M:的左,右焦點分別為,P為橢圓M上任一點,且的最大值的取值范圍是,其中,則橢圓M的離心率e的取值范圍是________.
的最大值為,
∴由題意知
,

∴橢圓離心率e的取值范圍是
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的長軸長為,離心率為,分別為其左右焦點.一動圓過點,且與直線相切.
(1)(ⅰ)求橢圓的方程;(ⅱ)求動圓圓心軌跡的方程;
(2)在曲線上有四個不同的點,滿足共線,共線,且,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率為,其長軸長與短軸長的和等于6.

(1)求橢圓的方程;
(2)如圖,設橢圓的上、下頂點分別為,是橢圓上異于的任意一點,直線分別交軸于點,若直線與過點的圓相切,切點為.證明:線段的長為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的左右焦點為、,一直線過交橢圓于、兩點,則的周長為   (  )
A.32B.16C.8D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知(4,2)是直線l被橢圓所截得的線段的中點,則l的方程是(    )
A.x+2y+8=0
B.x+2y-8=0
C.x-2y-8=0
D.x-2y+8=0

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率,連接橢圓的四個頂點得到的菱形的面積為4.
(1)求橢圓的方程;
(2)設直線與橢圓相交于不同的兩點,已知點的坐標為,點在線段的垂直平分線上,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的中心在原點,焦點在軸上,且長軸長為12,離心率為,則橢圓的方程是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

與橢圓有公共焦點,且離心率的雙曲線方程是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設橢圓的離心率,右焦點,方程的兩個根分別為,則點在(   )
A.圓
B.圓內(nèi)
C.圓
D.以上三種都有可能

查看答案和解析>>

同步練習冊答案