給出下列命題:
①函數(shù)f(x)=4cos(2x+
π
3
)
的一個對稱中心(-
12
,0)
;
②已知函數(shù)f(x)=min{sinx,cosx},則f(x)的值域為[-1,
2
2
]
;
③若α,β均為第一象限角,且α>β,則sinα<sinβ.
其中所有真命題的序號是
 
分析:①通過余弦函數(shù)的對稱中心求出f(x)=4cos(2x+
π
3
)
的對稱中心,然后判斷(-
12
,0)
是否為其中之一.
②f(x)=minsinx,cosx知f(x)為正弦余弦的最小值,通過函數(shù)圖象判斷.
③根據(jù)正弦函數(shù)在第一象限的單調(diào)性直接判斷.
解答:解:①函數(shù)f(x)=4cos(2x+
π
3
)
的一個對稱中心(-
12
,0)
;
∵y=cosx的對稱中心為:(kπ+
π
2
,0)(k∈z)
2x+
π
3
=kπ+
π
2

得:x=
2
+
π
12
 (k∈z)
當(dāng)k=-1時,x=-
12

∴函數(shù)f(x)=4cos(2x+
π
3
)
的一個對稱中心(-
12
,0)
正確.
②已知函數(shù)f(x)=min{sinx,cosx},則f(x)的值域為[-1,
2
2
]
;
根據(jù)正弦函數(shù)余弦函數(shù)圖象易知,兩者最小值為-1,最小值中最大為
2
2

故正確
③若α,β均為第一象限角,且α>β,則sinα<sinβ.顯然不正確如α=390度,β=30度,顯然α>β,但是sinα=sinβ
故答案為:①②.
點評:本題考查余弦函數(shù)的對稱性,以及余弦函數(shù)的圖象.通過對三個選項的分析分別判斷,本題為中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①函數(shù)f(x)=4cos(2x+
π
3
)
的一條對稱軸是直線x=-
12

②已知函數(shù)f(x)=min{sinx,cosx},則f(x)的值域為[-1,
2
2
]
;
③若α,β均為第一象限角,且α>β,則sinα>sinβ.
其中真命題的個數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(3a-1)x-2  x<1
logax         x≥1
,現(xiàn)給出下列命題:
①函數(shù)f(x)的圖象可以是一條連續(xù)不斷的曲線;
②能找到一個非零實數(shù)a,使得函數(shù)f (x)在R上是增函數(shù);
③a>1時函數(shù)y=f (|x|) 有最小值-2.
其中正確的命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域為D,若存在非零實數(shù)l使得對于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的“l(fā)高調(diào)函數(shù)”.現(xiàn)給出下列命題:
①函數(shù)f(x)=2x為R上的“1高調(diào)函數(shù)”;
②函數(shù)f(x)=sin2x為R上的“A高調(diào)函數(shù)”;
③如果定義域為[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上“m高調(diào)函數(shù)”,那么實數(shù)m的取值范圍是[2,+∞);
其中正確的命題是
①②③
①②③
.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①函數(shù)y=sin|x|不是周期函數(shù);        ②函數(shù)y=tanx在定義域內(nèi)是增函數(shù);
③函數(shù)y=|cos2x+
1
2
|
的周期是
π
2
;    ④函數(shù)y=sin(x+
2
)
是偶函數(shù).
其中正確的命題的序號是
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①函數(shù)y=cos(
2
3
x+
π
2
)
是奇函數(shù);②函數(shù)y=sinx+cosx的最大值為
3
2
;
③函數(shù)y=tanx在第一象限內(nèi)是增函數(shù);
④函數(shù)y=sin(2x+
π
2
)
的圖象關(guān)于直線x=
π
12
成軸對稱圖形.
其中正確的命題序號是

查看答案和解析>>

同步練習(xí)冊答案