(本小題滿分13分)

已知拋物線、橢圓和雙曲線都經(jīng)過(guò)點(diǎn),它們?cè)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013041620072024218083/SYS201304162008435234716130_ST.files/image002.png">軸上有共同焦點(diǎn),橢圓和雙曲線的對(duì)稱軸是坐標(biāo)軸,拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn).

(1)求這三條曲線的方程;

(2)對(duì)于拋物線上任意一點(diǎn),點(diǎn)都滿足,求的取值范圍.

 

【答案】

(1);(2)。

【解析】

試題分析:(1)設(shè)拋物線方程為,將代入方程得

-------------------2分

由題意知橢圓、雙曲線的焦點(diǎn)為----------------3分

對(duì)于橢圓,

所以橢圓方程為----------------5分

對(duì)于雙曲線,

,

所以雙曲線方程為----------------7分

(2)設(shè)------------(8分)

---------------(9分)

恒成立------------------(10分)

----------------(12分)

-----------(13分)

考點(diǎn):本題主要考查直線與拋物線、橢圓、雙曲線的定義及標(biāo)準(zhǔn)方程,二次函數(shù)的圖象和性質(zhì)。。

點(diǎn)評(píng):中檔題,曲線關(guān)系問(wèn)題,往往通過(guò)聯(lián)立方程組,得到一元二次方程,運(yùn)用韋達(dá)定理。本題求橢圓、雙曲線標(biāo)準(zhǔn)方程時(shí),主要運(yùn)用了曲線的定義,求拋物線方程則利用了待定系數(shù)法。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數(shù).

(1)求函數(shù)的最小正周期和最大值;

(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間上的圖象.

(3)設(shè)0<x<,且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).

(1)求的值;(2)判斷函數(shù)的單調(diào)性;

(3)若對(duì)任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長(zhǎng)都為2,的中點(diǎn)。

(Ⅰ)求證:∥平面;

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來(lái)源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).

(1) 求函數(shù)的表達(dá)式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數(shù)列的前項(xiàng)和

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案