已知橢圓C的中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,離心率為e=
3
2
,P是橢圓上一動(dòng)點(diǎn),F(xiàn)1,F(xiàn)2分別為橢圓的左、右焦點(diǎn),且△PF1F2面積的最大值為
3

(I)求橢圓C的方程;
(II)若直線l為圓x2+y2=
4
5
的切線,且直線l交橢圓C于A、B兩點(diǎn),求
OA
OB
的值.
分析:(I)設(shè)出橢圓C的標(biāo)準(zhǔn)方程,根據(jù)橢圓C的中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,離心率為e=
3
2
,P是橢圓上一動(dòng)點(diǎn),F(xiàn)1,F(xiàn)2分別為橢圓的左、右焦點(diǎn),且△PF1F2面積的最大值為
3
.分別求出a,b的值,即可得到橢圓C的方程;
(II)由直線l為圓x2+y2=
4
5
的切線,分斜率存在和不存在兩種情況,設(shè)A(x1,y1)B(x2,y2),構(gòu)造方程,利用“設(shè)而不求”“聯(lián)立方程”“韋達(dá)定理”,求出滿足條件的點(diǎn)的
OA
OB
的表達(dá)式,即可確定
OA
OB
的值.
解答:解:(I)設(shè)
x2
a2
+
y2
b2
=1(a>b>0)

c
a
=
3
2

1
2
•2c•b=
3

解得a=2,b=1
x2
4
+y2=1

(II)當(dāng)l斜率存在時(shí),設(shè)l:y=kx+m代入橢圓方程得(1+4k2)x2+8mkx+4m2-4=0△>0設(shè)A(x1,y1)B(x2,y2
x1+x2=
-8mk
1+4k2
x1x2=
4m2-4
1+4k2

∴y1•y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2
OA
OB
=x1x2+y1y2=
5m2-4k2-4
1+4k2

又l與圓C相切,
|m|
1+k2
=
2
5
5
?5m2-4k2-4=0

OA
OB
=0

當(dāng)l斜率不存在時(shí),l:x=±
2
5
5

易解得:A(
2
5
5
,
2
5
5
)
A(-
2
5
5
2
5
5
)

OA
OB
=0

綜上
OA
OB
=0
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是直線與圓的位置關(guān)系,直線與圓錐曲線的綜合應(yīng)用,其中根據(jù)已知條件求出橢圓的標(biāo)準(zhǔn)方程是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的中心在坐標(biāo)原點(diǎn),橢圓C任意一點(diǎn)P到兩個(gè)焦點(diǎn)F1(-
3
,0)
F2(
3
,0)
的距離之和為4.
(1)求橢圓C的方程;
(2)設(shè)過(guò)(0,-2)的直線l與橢圓C交于A、B兩點(diǎn),且
OA
OB
=0
(O為坐標(biāo)原點(diǎn)),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,左、右焦點(diǎn)分別為F1,F(xiàn)2,且|F1F2|=2,點(diǎn)P(1,
32
)在橢圓C上.
(I)求橢圓C的方程;
(II)如圖,動(dòng)直線l:y=kx+m與橢圓C有且僅有一個(gè)公共點(diǎn),點(diǎn)M,N是直線l上的兩點(diǎn),且F1M⊥l,F(xiàn)2M⊥l,求四邊形F1MNF2面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上且過(guò)點(diǎn)P(
3
1
2
)
,離心率是
3
2

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)直線l過(guò)點(diǎn)E(-1,0)且與橢圓C交于A,B兩點(diǎn),若|EA|=2|EB|,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•和平區(qū)一模)已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,離心率為
1
2
,它的一個(gè)頂點(diǎn)恰好是拋物線y=
3
12
x2的焦點(diǎn).
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)若A、B是橢圓C上關(guān)x軸對(duì)稱的任意兩點(diǎn),設(shè)P(-4,0),連接PA交橢圓C于另一點(diǎn)E,求證:直線BE與x軸相交于定點(diǎn)M;
(III)設(shè)O為坐標(biāo)原點(diǎn),在(II)的條件下,過(guò)點(diǎn)M的直線交橢圓C于S、T兩點(diǎn),求
OS
OT
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的中心在坐標(biāo)原點(diǎn),它的一條準(zhǔn)線為x=-
5
2
,離心率為
2
5
5

(1)求橢圓C的方程;
(2)過(guò)橢圓C的右焦點(diǎn)F作直線l交橢圓于A、B兩點(diǎn),交y軸于M點(diǎn),若
MA
=λ1
AF
, 
MB
=λ2
BF
,求λ12的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案