【題目】已知正四棱錐的所有頂點(diǎn)都在球的球面上,該四棱錐的五個(gè)面所在的平面截球面所得的圓大小相同,若正四棱錐的高為2,則球的表面積為(

A.B.C.D.

【答案】A

【解析】

根據(jù)四棱錐的五個(gè)面所在的平面截球面所得的圓大小相同,考慮將底面ABCD和一個(gè)側(cè)面PAB放入同一個(gè)圓中,來計(jì)算相應(yīng)的邊長(zhǎng),再根據(jù)球的性質(zhì)計(jì)算半徑即可得球表面積.

如圖所示,圓是正方形ABCD和等腰△PAB的外接圓,設(shè)圓的半徑為r,

所以

所以

設(shè)點(diǎn)O是四棱錐P - ABCD的外接球的球心,F為正方形ABCD的中心,如圖,

PF平面ABCD

所以在AFP中有

又因?yàn)?/span>AF的長(zhǎng)度為圓的半徑,

所以

所以

設(shè)四棱錐P - ABCD的外接球的半徑為R,

中,,

所以,

因?yàn)?/span>,

所以

所以

解得

所以四棱錐P - ABCD的外接球的表面積為,

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為:,傾斜角為銳角的直線l過點(diǎn)與單位圓相切.

1)求曲線C的直角坐標(biāo)方程和直線l的參數(shù)方程;

2)設(shè)直線l與曲線C交于A,B兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在棱長(zhǎng)為1的正方體中,,分別是線段,的中點(diǎn),又,分別在線段上,且.設(shè)平面平面,現(xiàn)有下列結(jié)論:

平面;

③直線與平面不垂直;

④當(dāng)變化時(shí),不是定直線.

其中不成立的結(jié)論是______.(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】東莞的輕軌給市民出行帶來了很大的方便,越來越多的市民選擇乘坐輕軌出行,很多市民都會(huì)開汽車到離家最近的輕軌站,將車停放在輕軌站停車場(chǎng),然后進(jìn)站乘輕軌出行,這給輕軌站停車場(chǎng)帶來很大的壓力.某輕軌站停車場(chǎng)為了解決這個(gè)問題,決定對(duì)機(jī)動(dòng)車停車施行收費(fèi)制度,收費(fèi)標(biāo)準(zhǔn)如下:4小時(shí)內(nèi)(含4小時(shí))每輛每次收費(fèi)5元;超過4小時(shí)不超過6小時(shí),每增加一小時(shí)收費(fèi)增加3元;超過6小時(shí)不超過8小時(shí),每增加一小時(shí)收費(fèi)增加4元,超過8小時(shí)至24小時(shí)內(nèi)(含24小時(shí))收費(fèi)30元;超過24小時(shí),按前述標(biāo)準(zhǔn)重新計(jì)費(fèi).上述標(biāo)準(zhǔn)不足一小時(shí)的按一小時(shí)計(jì)費(fèi).為了調(diào)查該停車場(chǎng)一天的收費(fèi)情況,現(xiàn)統(tǒng)計(jì)1000輛車的停留時(shí)間(假設(shè)每輛車一天內(nèi)在該停車場(chǎng)僅停車一次),得到下面的頻數(shù)分布表:

(小時(shí))

頻數(shù)(車次)

100

100

200

200

350

50

以車輛在停車場(chǎng)停留時(shí)間位于各區(qū)間的頻率代替車輛在停車場(chǎng)停留時(shí)間位于各區(qū)間的概率.

1)現(xiàn)在用分層抽樣的方法從上面1000輛車中抽取了100輛車進(jìn)行進(jìn)一步深入調(diào)研,記錄并統(tǒng)計(jì)了停車時(shí)長(zhǎng)與司機(jī)性別的列聯(lián)表:

合計(jì)

不超過6小時(shí)

30

6小時(shí)以上

20

合計(jì)

100

完成上述列聯(lián)表,并判斷能否有90%的把握認(rèn)為“停車是否超過6小時(shí)”與性別有關(guān)?

2)(i表示某輛車一天之內(nèi)(含一天)在該停車場(chǎng)停車一次所交費(fèi)用,求的概率分布列及期望;

ii)現(xiàn)隨機(jī)抽取該停車場(chǎng)內(nèi)停放的3輛車,表示3輛車中停車費(fèi)用大于的車輛數(shù),求的概率.

參考公式:,其中

0.40

0.25

0.15

0.10

0.05

0.025

0.780

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種昆蟲的日產(chǎn)卵數(shù)和時(shí)間變化有關(guān),現(xiàn)收集了該昆蟲第1天到第5天的日產(chǎn)卵數(shù)據(jù):

x

1

2

3

4

5

日產(chǎn)卵數(shù)y(個(gè))

6

12

25

49

95

對(duì)數(shù)據(jù)初步處理后得到了如圖所示的散點(diǎn)圖和表中的統(tǒng)計(jì)量的值.

15

55

15.94

54.75

1)根據(jù)散點(diǎn)圖,利用計(jì)算機(jī)模擬出該種昆蟲日產(chǎn)卵數(shù)y關(guān)于x的回歸方程為(其中e為自然對(duì)數(shù)的底數(shù)),求實(shí)數(shù)a,b的值(精確到0.1);

2)根據(jù)某項(xiàng)指標(biāo)測(cè)定,若日產(chǎn)卵數(shù)在區(qū)間(e6,e8)上的時(shí)段為優(yōu)質(zhì)產(chǎn)卵期,利用(1)的結(jié)論,估計(jì)在第6天到第10天中任取兩天,其中恰有1天為優(yōu)質(zhì)產(chǎn)卵期的概率.

附:對(duì)于一組數(shù)據(jù)(v1,μ1),(v2μ2),,(vn,μn),其回歸直線的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中, 平面, , , , 的中點(diǎn), 在線段上,且滿足.

(1)求證: 平面;

(2)求二面角的余弦值;

(3)在線段上是否存在點(diǎn),使得與平面所成角的余弦值是,若存在,求出的長(zhǎng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的焦距是,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)3倍,任作斜率為的直線與橢圓交于兩點(diǎn)(如圖所示),且點(diǎn)在直線的左上方.

1)求橢圓的方程;

2)若,求的面積;

3)證明:的內(nèi)切圓的圓心在一條定直線上。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,若橢圓的長(zhǎng)軸長(zhǎng)等于的直徑,且,成等差數(shù)列

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)、是橢圓上不同的兩點(diǎn),線段的垂直平分線軸于點(diǎn),試求點(diǎn)的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】網(wǎng)購(gòu)已經(jīng)成為我們?nèi)粘I钪械囊徊糠,某地區(qū)隨機(jī)調(diào)查了100名男性和100名女性在雙十一活動(dòng)中用于網(wǎng)購(gòu)的消費(fèi)金額,數(shù)據(jù)整理如下:

男性消費(fèi)金額頻數(shù)分布表

消費(fèi)金額

(單位:元)

0~500

500~1000

1000~1500

1500~2000

2000~3000

人數(shù)

15

15

20

30

20

1)試分別計(jì)算男性、女性在此活動(dòng)中的平均消費(fèi)金額;

2)如果分別把男性、女性消費(fèi)金額與中位數(shù)相差不超過200元的消費(fèi)稱作理性消費(fèi),試問是否有5成以上的把握認(rèn)為理性消費(fèi)與性別有關(guān).

附:

0.50

0.40

0.25

0.15

0.10

0.05

0.455

0.708

1.323

2.072

2.706

3.841

查看答案和解析>>

同步練習(xí)冊(cè)答案