15.已知復數(shù)z滿足z-i=iz+3,則$\overline{z}$=( 。
A.1+2iB.1-2iC.2+2iD.2-2i

分析 利用復數(shù)的代數(shù)形式混合運算,求解復數(shù),推出結(jié)果即可.

解答 解:復數(shù)z滿足z-i=iz+3,
可得z=$\frac{3+i}{1-i}$=$\frac{(3+i)(1+i)}{(1-i)(1+i)}$=$\frac{2+4i}{2}$=1+2i.
則$\overline{z}$=1-2i.
故選:B.

點評 本題考查復數(shù)的代數(shù)形式的混合運算,復數(shù)的基本概念,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知向量$\overrightarrow{a}$=(cos$\frac{3}{2}$x,sin$\frac{3}{2}$x),$\overrightarrow$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$)且x∈[-$\frac{π}{2}$,$\frac{π}{2}$],求函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$-|$\overrightarrow{a}$+$\overrightarrow$|的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知{an}是公差不為零的等差數(shù)列,a1=1,且a1,a3,a9成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項;
(Ⅱ)求證:$\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+…+\frac{1}{{{a_n}{a_{n+1}}}}$<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(4-x),x<4}\\{1+{2}^{x-1},x≥4}\end{array}\right.$,則f(0)+f(log232)=( 。
A.19B.17C.15D.13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.在數(shù)列{an}中,已知a1=1,前n項和Sn滿足${S}_{n}^{2}$=an(Sn-$\frac{1}{2}$)(n≥2),則Sn=$\frac{1}{3-2n}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知遞增等差數(shù)列{an}的前n項和為Sn,a1=1,且a2+1,a4+1,S4成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=$\frac{a_n}{{{a_{n+1}}}}+\frac{{{a_{n+1}}}}{a_n}$-2,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.O是△ABC的外接圓的圓心,若AC=3,$\overrightarrow{AO}$•$\overrightarrow{BC}$=2,則AB=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知集合U={-1,0,1,2},A={-1,1,2},則∁UA={0}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知數(shù)列{an}中,an+1=$\frac{1}{3}{a_n}$+$\frac{1}{3^n}$(n∈N*),a1=1;
(1)設bn=3nan(n∈N*),求證:{bn}是等差數(shù)列;
(2)設數(shù)列{an}的前n項和為Sn,求$\lim_{n→∞}\frac{{9-4{S_n}}}{{9{a_n}}}$的值.

查看答案和解析>>

同步練習冊答案