已知數(shù)列的前項(xiàng)和為,點(diǎn)在直線上.數(shù)列滿足,且,前9項(xiàng)和為153.
(1)求數(shù)列、{的通項(xiàng)公式;
(2)設(shè),數(shù)列的前和為,求使不等式對(duì)一切都成立的最大正整數(shù)的值;
(3)設(shè),問(wèn)是否存在,使得成立?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
(1) = (2)
(3)存在唯一正整數(shù)m =11,使得成立.
【解析】
試題分析:(1)由題意,得即
故當(dāng)時(shí),
當(dāng)=1時(shí),,而當(dāng)=1時(shí),+5=6,
所以,
又,即
所以()為等差數(shù)列,于是
而,,
因此,=,即=
(2)
所以,
由于,
因此Tn單調(diào)遞增,故
令
(Ⅲ)
①當(dāng)m為奇數(shù)時(shí),m + 15為偶數(shù).
此時(shí),
所以
②當(dāng)m為偶數(shù)時(shí),m + 15為奇數(shù).
此時(shí),
所以(舍去).
綜上,存在唯一正整數(shù)m =11,使得成立.
考點(diǎn):數(shù)列遞推式;等差關(guān)系的確定;數(shù)列的求和.
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)與求和,考查裂項(xiàng)法的運(yùn)用,確定數(shù)列的通項(xiàng)是關(guān)鍵.考查運(yùn)算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.對(duì)數(shù)學(xué)思維的要求比較高,有一定的探索性.綜合性強(qiáng),難度大,易出錯(cuò),是高考的重點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分14分)
已知數(shù)列的前項(xiàng)和為,若且.
(Ⅰ)求證是等差數(shù)列,并求出的表達(dá)式;
(Ⅱ) 若,求證.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知數(shù)列的前項(xiàng)和為,求這個(gè)數(shù)列的通項(xiàng)公式.這個(gè)數(shù)列是等差數(shù)列嗎?如果是,它的首項(xiàng)與公差分別是什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011屆福建省龍巖市高三上學(xué)期期末考試數(shù)學(xué)理卷(非一級(jí)校) 題型:解答題
(本題滿分13分)
已知數(shù)列的前項(xiàng)和為,滿足.
(Ⅰ)證明:數(shù)列為等比數(shù)列,并求出;
(Ⅱ)設(shè),求的最大項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年四川省瀘縣二中高2013屆春期重點(diǎn)班第一學(xué)月考試數(shù)學(xué)試題 題型:解答題
(本小題14分)已知數(shù)列{}的前項(xiàng)和為,且=();=3
且(),
(1)寫(xiě)出;
(2)求數(shù)列{},{}的通項(xiàng)公式和;
(3)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆廣東省高一下學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:解答題
已知數(shù)列的前項(xiàng)和為,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)令,數(shù)列的前項(xiàng)和為,若不等式 對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com