【題目】已知如圖,長(zhǎng)方體中,,,點(diǎn),,分別為,, 的中點(diǎn),過(guò)點(diǎn)的平面與平面平行,且與長(zhǎng)方體的面相交,交線圍成一個(gè)幾何圖形.
(1)在圖中畫(huà)出這個(gè)幾何圖形,并求這個(gè)幾何圖形的面積(畫(huà)圖說(shuō)出作法,不用說(shuō)明理由);
(2)求證:平面.
【答案】(1) .(2)見(jiàn)解析.
【解析】
(1)以公理三及其推理,以及面面平行判定定理為依據(jù),即可作出過(guò)點(diǎn)且與平面平行的平面,由于其截面為等腰梯形,對(duì)應(yīng)運(yùn)用梯形面積公式即可求出該梯形面積.
(2)設(shè)交EF于Q,連接DQ,關(guān)鍵通過(guò)證明以及,即可利用線面垂直判定定理證明.而對(duì)于的證明,可以通過(guò)平面即可,而的證明,需要證得即可.
(1)設(shè)N為的中點(diǎn),連結(jié)MN,AN、AC、CM,
則四邊形MNAC為所作圖形;
易知MN(或),四邊形為梯形,
且,
過(guò)M作MP⊥AC于點(diǎn)P,可得,
,得
所以梯形的面積=;
(2)證法1:在長(zhǎng)方體中,設(shè)交EF于Q,連接DQ,則Q為EF的中點(diǎn)并且為的四等點(diǎn),如圖,
由得,又,,
平面,則,
且,則
,
,
平面
證法2:設(shè)交EF于Q,連接DQ,則Q為EF的中點(diǎn),且為的四等分點(diǎn),
由可知,
又,,
平面,
由得,
得,
,
,又,
平面
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩個(gè)平面垂直,下列命題
①一個(gè)平面內(nèi)已知直線必垂直于另一個(gè)平面內(nèi)的任意一條直線
②一個(gè)平面內(nèi)的已知直線必垂直于另一個(gè)平面的無(wú)數(shù)條直線
③一個(gè)平面內(nèi)的任一條直線必垂直于另一個(gè)平面
④過(guò)一個(gè)平面內(nèi)任意一點(diǎn)作交線的垂線,則此垂線必垂直于另一個(gè)平面
其中不正確命題的個(gè)數(shù)是( )
A.3B.2C.1D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,點(diǎn)是橢圓上任意一點(diǎn),的最小值為,且該橢圓的離心率為.
(1)求橢圓的方程;
(2)若是橢圓上不同的兩點(diǎn),且,若,試問(wèn)直線是否經(jīng)過(guò)一個(gè)定點(diǎn)?若經(jīng)過(guò)定點(diǎn),求出該定點(diǎn)的坐標(biāo);若不經(jīng)過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)若,,求函數(shù)的極值;
(2)若是函數(shù)的一個(gè)極值點(diǎn),試求出關(guān)于的關(guān)系式(即用表示),并確定的單調(diào)區(qū)間;(提示:應(yīng)注意對(duì)的取值范圍進(jìn)行討論)
(3)在(2)的條件下,設(shè),函數(shù),若存在使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)隨機(jī)詢問(wèn)50名性別不同的大學(xué)生是否愛(ài)好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表,由得
參照附表,得到的正確結(jié)論是
A. 有99.5%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
B. 有99.5%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
C. 在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D. 在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐,為矩形,,,平面平面.
(1)證明:平面平面;
(2)若為中點(diǎn),直線與平面所成的角為,求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓與雙曲線有相同的焦點(diǎn),點(diǎn)是曲線與的一個(gè)公共點(diǎn),,分別是和的離心率,若,則的最小值為( )
A. B. 4 C. D. 9
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn,等比數(shù)列{bn}的前n項(xiàng)和為T(mén)n,a1=﹣1,b1=1,a2+b2=2.
(1)若a3+b3=5,求{bn}的通項(xiàng)公式;
(2)若T3=21,求S3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,、是離心率為的橢圓:的左、右焦點(diǎn),過(guò)作軸的垂線交橢圓所得弦長(zhǎng)為,設(shè)、是橢圓上的兩個(gè)動(dòng)點(diǎn),線段的中垂線與橢圓交于、兩點(diǎn),線段的中點(diǎn)的橫坐標(biāo)為1.
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com