科目:高中數(shù)學 來源: 題型:
若α,β是一組基底,向量γ=x·α+y·β(x,y∈R),則稱(x,y)為向量γ在基底α,β下的坐標,現(xiàn)已知向量a在基底p=(1,-1),q=(2,1)下的坐標為(-2,2),則a在另一組基底m=(-1,1),n=(1,2)下的坐標為( )
A.(2,0) B.(0,-2)
C.(-2,0) D.(0,2)
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年福建省高三第一次階段考試理科數(shù)學試卷(解析版) 題型:選擇題
下列說法錯誤的是 ( )
A.命題“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2-3x+2≠0”
B.若p∧q為假命題,則p、q均為假命題
C.“x=1”是“x2-3x+2=0”的充分不必要條件
D.對于命題p:x∈R,使x2+x+1<0,則p:x∈R,均有x2+x+1≥0
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年浙江省溫州市高三上學期期初考試理科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù),實數(shù)a,b為常數(shù)),
(1)若a=1,在(0,+∞)上是單調(diào)增函數(shù),求b的取值范圍;
(2)若a≥2,b=1,判斷方程在(0,1]上解的個數(shù)
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆廣東省高一期中考試文科數(shù)學試卷A卷(解析版) 題型:解答題
已知函數(shù)f(x)(x∈R)滿足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的實數(shù)x只有一個.
(1)求函數(shù)f(x)的表達式;
(2)若數(shù)列{an}滿足a1=,an+1=f(an),bn=-1,n∈N*,證明數(shù)列{bn}是等比數(shù)列,并求出{bn}的通項公式;
(3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*).
【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.
由f(x)=2x只有一解,即=2x,
也就是2ax2-2(1+b)x=0(a≠0)只有一解,
∴b=-1.∴a=-1.故f(x)=.…………………………………………4分
(2)an+1=f(an)=(n∈N*),bn=-1, ∴===,
∴{bn}為等比數(shù)列,q=.又∵a1=,∴b1=-1=,
bn=b1qn-1=n-1=n(n∈N*).……………………………9分
(3)證明:∵anbn=an=1-an=1-=,
∴a1b1+a2b2+…+anbn=++…+<++…+
==1-<1(n∈N*).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com