設(shè)函數(shù)f(x)=x2+bln(x+1),其中b≠0.
(1)若b=-12,求f(x)在[1,3]的最小值;
(2)如果f(x)在定義域內(nèi)既有極大值又有極小值,求實數(shù)b的取值范圍;
(3)是否存在最小的正整數(shù)N,使得當n≥N時,不等式恒成立.
【答案】分析:(1)當b=-12時,由得x=2,可判斷出當x∈[1,2)時,f(x)單調(diào)遞減;當x∈(2,3]時,f(x)單調(diào)遞增,故f(x)在[1,3]的最小值在x=2時取得.
(2)要使f(x)在定義域內(nèi)既有極大值又有極小值,即f(x)在定義域內(nèi)與X軸有三個不同的交點,即使在(-1,+∞)有兩個不等實根,即2x2+2x+b=0在(-1,+∞)有兩個不等實根,可以利用一元二次函數(shù)根的分布可得,解之即可求b的范圍.
(3)先構(gòu)造函數(shù)h(x)=x3-x2+ln(x+1),然后研究h(x)在[0,+∞)上的單調(diào)性,求出函數(shù)h(x)的最小值,從而得到ln(x+1)>x2-x3,最后令,即可證得結(jié)論.
解答:解:(1)由題意知,f(x)的定義域為(-1,+∞),
b=-12時,由,得x=2(x=-3舍去),
當x∈[1,2)時,f′(x)<0,當x∈(2,3]時,f′(x)>0,
所以當x∈[1,2)時,f(x)單調(diào)遞減;當x∈(2,3]時,f(x)單調(diào)遞增,
所以f(x)min=f(2)=4-12ln3
(2)由題意在(-1,+∞)有兩個不等實根,
即2x2+2x+b=0在(-1,+∞)有兩個不等實根,
設(shè)g(x)=2x2+2x+b,則,解之得;
(3)對于函數(shù)f(x)=x2-ln(x+1),令函數(shù)h(x)=x3-f(x)=x3-x2+ln(x+1)
,
∴當x∈[0,+∞)時,h′(x)>0
所以函數(shù)h(x)在[0,+∞)上單調(diào)遞增,
又h(0)=0,
∴x∈(0,+∞)時,恒有h(x)>h(0)=0
即x2<x3+ln(x+1)恒成立.
,則有恒成立.
顯然,存在最小的正整數(shù)N=1,使得當n≥N時,不等式恒成立
點評:本題以函數(shù)為載體,考查函數(shù)的最值,考查函數(shù)的單調(diào)性.第一問判斷f(x)在定義域的單調(diào)性即可求出最小值.第二問將f(x)在定義域內(nèi)既有極大值又有極小值問題轉(zhuǎn)化為f(x)在定義域內(nèi)與X軸有三個不同的交點是解題的關(guān)鍵,第三問的關(guān)鍵是構(gòu)造新函數(shù),利用導數(shù)證明不等式.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=x2+|x-2|-1,x∈R.
(1)判斷函數(shù)f(x)的奇偶性;
(2)求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0與g(x0)<0同時成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)討論f(x)的單調(diào)性.
(2)若f(x)有兩個極值點x1,x2,且x1<x2,求f(x2)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲線y=f(x)在x=1處的切線為y=x,求實數(shù)m的值;
(2)當m=2時,若方程f(x)-h(x)=0在[1,3]上恰好有兩個不同的實數(shù)解,求實數(shù)a的取值范圍;
(3)是否存在實數(shù)m,使函數(shù)f(x)和函數(shù)h(x)在公共定義域上具有相同的單調(diào)性?若存在,求出m的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定義域內(nèi)既有極大值又有極小值,求實數(shù)a的取值范圍;
(3)求證:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步練習冊答案