已知拋物線的焦點(diǎn)為F,準(zhǔn)線為l,過F的直線與該拋物線交于A、B兩點(diǎn),設(shè)為弦AB的中點(diǎn),則下列結(jié)論:①以AB為直徑的圓必與準(zhǔn)線l相切;    ②; 

;     ④;    ⑤.

其中一定正確的有                (寫出所有正確結(jié)論的序號(hào)).

 

【答案】

①③④.

【解析】

試題分析:通過設(shè)出直線方程y=k(x- )與拋物線聯(lián)立方程組得到可知①以AB為直徑的圓必與準(zhǔn)線l相切;成立,②,不成立。

對(duì)于③,利用平行性來證明成立,對(duì)于④;根據(jù)韋達(dá)定理可知成立,    對(duì)于⑤. 錯(cuò)誤,應(yīng)該是故可知答案為①③④.

考點(diǎn):直線與拋物線

點(diǎn)評(píng):解決的關(guān)鍵是根據(jù)直線與拋物線的位置關(guān)系以及拋物線定義來求解,屬于中檔題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年浙江省高三上學(xué)期第三次統(tǒng)練文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知拋物線的焦點(diǎn)為F,過F的直線交拋物線于M、N兩點(diǎn),其準(zhǔn)線與x軸交于K點(diǎn).

(1)求證:KF平分∠MKN;

(2)O為坐標(biāo)原點(diǎn),直線MO、NO分別交準(zhǔn)線于點(diǎn)P、Q,求的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年遼寧沈陽二中等重點(diǎn)中學(xué)協(xié)作體高三領(lǐng)航高考預(yù)測(cè)(二)理數(shù)學(xué)卷(解析版) 題型:填空題

已知拋物線的焦點(diǎn)為F,過拋物線在第一象限部分上一點(diǎn)P的切線為,過P點(diǎn)作平行于軸的直線,過焦點(diǎn)F作平行于的直線交于M,若,則點(diǎn)P的坐標(biāo)為         

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆河北省唐山市高三年級(jí)第一學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)已知拋物線的焦點(diǎn)為F,過點(diǎn)F作直線與拋物線交于A,B兩點(diǎn),拋物線的準(zhǔn)線與軸交于點(diǎn)C。

(1)證明:

(2)求的最大值,并求取得最大值時(shí)線段AB的長(zhǎng)。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年普通高等學(xué)校招生全國(guó)統(tǒng)一考試(全國(guó)Ⅰ)理科數(shù)學(xué)全解全析 題型:解答題

(本小題滿分12分)(注意:在試題卷上作答無效)

已知拋物線的焦點(diǎn)為F,過點(diǎn)的直線相交于、兩點(diǎn),點(diǎn)A關(guān)于軸的對(duì)稱點(diǎn)為D .

(Ⅰ)證明:點(diǎn)F在直線BD上;

(Ⅱ)設(shè),求的內(nèi)切圓M的方程 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年黑龍江省高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:選擇題

已知拋物線的焦點(diǎn)為F,準(zhǔn)線為,經(jīng)過F且斜率為的直線與拋物線在軸上方的部分相交于點(diǎn)A,且AK,垂足為K,則的面積是( 。

A 4     B        C       D 8

 

查看答案和解析>>

同步練習(xí)冊(cè)答案