已知向量
a
=(1,0),
b
=(0,1),
c
=k
a
+
b
d
=
a
-2
b
,如果
c
d
,則k=
 
考點(diǎn):平面向量共線(平行)的坐標(biāo)表示
專題:平面向量及應(yīng)用
分析:由題意求出
c
,
d
,利用
c
d
的充要條件求出k即可.
解答: 解:向量
a
=(1,0),
b
=(0,1),
c
=k
a
+
b
d
=
a
-2
b
,
c
=(k,1)
d
=(1,-2),
c
d
,
∴-2k=1,解得k=-
1
2

故答案為:-
1
2
點(diǎn)評(píng):本題考查向量的坐標(biāo)運(yùn)算,向量共線的充要條件的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下面四個(gè)命題:
①命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②把函數(shù)y=3sin(2x+
π
3
)的圖象向右平移
π
3
個(gè)單位,得到y(tǒng)=3sin2x的圖象;
③正方體的內(nèi)切球與其外接球的表面積之比為1:3;  
④若f(x)=sinxcosx,則存在正實(shí)數(shù)a,使得f(x-a)為奇函數(shù),f(x+a)為偶函數(shù).
其中所有正確命題的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為
x=1-t
y=2+3t
(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xQy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,曲線C2的方程為ρ=2cosθ,則曲線C1與C2的位置關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,an+1=(1+
1
n2
)an+
1
3n-1
,n∈N*

(1)求證:當(dāng)n≥2且n∈N*時(shí),an≥3;
(2)求證:an<e3,n∈N*(e為自然對(duì)數(shù)的底數(shù),參考數(shù)據(jù)ln3<1.1,ln4<1.4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如程序框圖的程序執(zhí)行后輸出的結(jié)果是( 。
A、1320B、1230
C、132D、11880

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用直線y=m和直線y=x將區(qū)域x2+y2≤6分成若干塊.現(xiàn)在用5種不同的顏色給這若干塊染色,每塊只染一種顏色,且任意兩塊不同色,若共有120種不同的染色方法,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}是等差數(shù)列,a1=f(x+1),a2=0,a3=f(x-1),其中f(x)=x2-4x+2,數(shù)列{an}前n項(xiàng)和存在最小值.
(1)求通項(xiàng)公式an
(2)若bn=(
2
 an,求數(shù)列{an•bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)正三棱錐的四個(gè)頂點(diǎn)都在半徑為R的球面上,其中底面的三個(gè)頂點(diǎn)在該球的一個(gè)大圓上,且該正三棱錐的體積是
3
4
,則球的體積為( 。
A、
1
3
π
B、
1
6
π
C、
32
3
π
D、
4
3
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

寫出下列命題的否定形式:
(1)所有的實(shí)數(shù)的平方大于或等于0,
 
;
(2)存在一對(duì)實(shí)數(shù),使2x+3y+3>0成立,
 

查看答案和解析>>

同步練習(xí)冊(cè)答案