18.已知F是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點,過F作傾斜角為60°的直線l,直線l與雙曲線交于A,與y軸交于點B,且$\overrightarrow{FA}$=$\frac{1}{2}$$\overrightarrow{FB}$,則該雙曲線的離心率等于( 。
A.$\sqrt{3}$+1B.$\frac{\sqrt{3}+1}{2}$C.$\frac{\sqrt{3}}{2}$+1D.$\frac{\sqrt{3}-1}{4}$

分析 求出雙曲線的左焦點,設(shè)出直線l的方程為y=$\sqrt{3}$(x+c),令x=0,可得B的坐標(biāo),由向量共線的坐標(biāo)表示,可得A的坐標(biāo),代入雙曲線方程,結(jié)合離心率公式及取值范圍,計算即可得到雙曲線的離心率.

解答 解:雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點F為(-c,0),
直線l的方程為y=$\sqrt{3}$(x+c),
令x=0,則y=$\sqrt{3}$c,
即B(0,$\sqrt{3}$c),設(shè)A(m,n),
由$\overrightarrow{FA}$=$\frac{1}{2}$$\overrightarrow{FB}$,可得(m+c,n)=$\frac{1}{2}$(c,$\sqrt{3}$c),
即有m=-$\frac{1}{2}$c,n=$\frac{\sqrt{3}}{2}$c.
即A(-$\frac{1}{2}$c,$\frac{\sqrt{3}}{2}$c),
代入雙曲線方程,可得$\frac{1}{4}$•$\frac{{c}^{2}}{{a}^{2}}$-$\frac{3}{4}$•$\frac{{c}^{2}}{^{2}}$=1,
由于e=$\frac{c}{a}$(e>1),則e2-3•$\frac{{e}^{2}}{{e}^{2}-1}$=4,
化簡可得e4-8e2+4=0,
解得:e2=4±2$\sqrt{3}$,
由e>1,解得:e=$\sqrt{3}$+1,
故選A.

點評 本題考查雙曲線的方程和性質(zhì),主要考查求曲線的離心率的問題,同時考查向量共線的坐標(biāo)表示,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列命題中不正確的是(  )
A.如果平面α⊥平面 γ,平面β⊥平面 γ,α∩β=l,那么l⊥γ
B.如果平面α⊥平面 β,那么平面α內(nèi)一定存在直線平行于平面β
C.如果平面α不垂直于平面β,那么平面α內(nèi)一定不存在直線垂直于平面β
D.如果平面α⊥平面 β,過α內(nèi)任意一點作交線的垂線,那么此垂線必垂直于β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.?dāng)?shù)軸上有四個間隔為1的點依次記為A、B、C、D,在線段AD上隨機(jī)取一點E,則E點到B、C兩點的距離之和小于2的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.拋物線 M:y2=2px(p>0)與橢圓 $N:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$有相同的焦點F,拋物線M與 橢圓N交于A,B,若F,A,B共線,則橢圓N的離心率等于$\sqrt{2}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)函數(shù)f(x),g(x)的定義域為R,且f(x)是奇函數(shù),g(x)是偶函數(shù),則下列結(jié)論正確的是(  )
A.f(x)•g(x)是偶函數(shù)B.f(x)+x2是奇函數(shù)C.f(x)-sinx是奇函數(shù)D.g(x)+2x是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.以下說法正確的有②④
①若p:?x0∈R,x${\;}_{0}^{2}$-x0>0,則¬p:?x∈R,x2-x>0
②已知m,n是兩條不同的直線,α,β是兩個不同是平面,若m⊥α,m∥n,n∥β,則α⊥β
③“m>2”是“?k∈R,y=kx+2k與x2+y2+mx=0都有公共點”的充分不必要條件
④在△ABC中,AB=AC=3,BC=2,p是△ABC內(nèi)部的一點,若$\frac{{S}_{△PAB}}{\overrightarrow{PA}•\overrightarrow{PB}}$=$\frac{{S}_{△PBC}}{\overrightarrow{PB}•\overrightarrow{PC}}$=$\frac{{S}_{△PAC}}{\overrightarrow{PA}•\overrightarrow{PC}}$(S△PAB,S△PBC,S△PAC表示相應(yīng)三角形的面積),則PA+PB+PC=2$\sqrt{2}$+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知定義在R上的函數(shù)滿足f(1)=2,且f(x)的導(dǎo)數(shù)f′(x)在R上恒有f′(x)<1(x∈R),則不等式f(x)<x+1的解集為( 。
A.(1,+∞)B.(-∞,-1)C.(-1,1)D.(-∞,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-lnx,x≥0}\\{(\frac{1}{2})^{x},x<0}\end{array}\right.$則f(f(e))=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)點M(3,t),若在圓O:x2+y2=6上存在兩點A,B,使得∠AMB=90°,則t的取值范圍是-$\sqrt{3}$≤t≤$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案