設(shè)f(x)是一次函數(shù),且f(1)=1,f(x+1)=f(x)+3,求f(x)的解析式.
考點:函數(shù)解析式的求解及常用方法
專題:待定系數(shù)法,函數(shù)的性質(zhì)及應(yīng)用
分析:設(shè)出一次函數(shù)f(x)的解析式,根據(jù)題意,列出方程組,求出f(x)的解析式來.
解答: 解:設(shè)一次函數(shù)f(x)=kx+b(k≠0),
∵f(1)=1,
∴k+b=1…①,
又∵f(x+1)=f(x)+3,
∴k(x+1)+b=kx+b+3,
即k+b=b+3…②;
由①、②得:b=-2,k=3;
∴f(x)=3x-2.
點評:本題考查了用待定系數(shù)法求函數(shù)解析式的應(yīng)用問題,是基礎(chǔ)題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若a:b:c=2:3:4,求
2sinA-sinB
sin2C
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
1-|x|
(x∈(-1,1)),有下列結(jié)論:
(1)?x∈(-1,1),等式f(-x)+f(x)=0恒成立;
(2)?m∈[0,+∞),方程|f(x)|=m有兩個不等實數(shù)根;
(3)?x1,x2∈(-1,1),若x1≠x2,則一定有f(x1)≠f(x2);
(4)存在無數(shù)多個實數(shù)k,使得函數(shù)g(x)=f(x)-kx在(-1,1)上有三個零點
則其中正確結(jié)論的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定積分
π
2
0
0sintcostdt=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中既是偶函數(shù)又在(0,+∞)上是增函數(shù)的是( 。
A、y=|x|+1
B、y=x3
C、y=
lnx
x
D、y=2-|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線x=2的傾斜角為α,則α=( 。
A、0
B、
π
4
C、
π
2
D、不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖①,一條寬為1km的兩平行河岸有三個工廠A、B、C,工廠B與A、C的直線距離都是2km,BC與河岸垂直,D為垂足.現(xiàn)要在河岸AD上修建一個供電站,并計劃鋪設(shè)地下電纜和水下電纜,從供電站向三個工廠供電.已知鋪設(shè)地下電纜、水下電纜的費用分別為2萬元/km、4萬元/km.
(Ⅰ)已知工廠A與B之間原來鋪設(shè)有舊電纜(原線路不變),經(jīng)改造后仍可使用,舊電纜的改造費用是0.5萬元/km.現(xiàn)決定將供電站建在點D處,并通過改造舊電纜修建供電線路,試求該方案總施工費用的最小值;
(Ⅱ)如圖②,已知供電站建在河岸AD的點E處,且決定鋪設(shè)電纜的線路為CE、EA、EB,若∠DCE=θ(0≤θ≤
π
3
),試用θ表示出總施工費用y(萬元)的解析式,并求總施工費用y的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p:實數(shù)m<-2滿足C=(2m+1,m-1)(其中a>0),命題q:實數(shù)m滿足m
(1)若a=1,且p∧q為真,求實數(shù)x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|(x2+ax+b)(x-1)=0},集合B滿足條件:A∩B={1,2},A∩(∁UB)={3},U=R,求a+b的值.

查看答案和解析>>

同步練習(xí)冊答案