取第一象限內(nèi)的兩點P)、P),使1,,2,依次成等差數(shù)列,1,,2依次成等比數(shù)列,則點P、P與射線l:y=x ( x≥0 )的關(guān)系為                        (    )


A、點P、P都在l的上方   B、點P、P都在l上

C、點P、P都在l的下方   D、點P在l的下方,點P在l的上方。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)平面中,△ABC的兩個頂點的坐標(biāo)分別為A(-
7
7
a,0),B(
7
7
a,0)(a>0)
,兩動點M、N滿足
MA
+
MB
+
MC
=
0
,|
NC
|=
7
|
NA
|=
7
|
NB
|
,向量
MN
AB
共線.
(1)求△ABC的頂點C的軌跡方程;
(2)若過點P(0,a)的直線與(1)的軌跡相交于E、F兩點,求
PE
PF
的取值范圍.
(3)若G(-a,0),H(2a,0),θ為C點的軌跡在第一象限內(nèi)的任意一點,則是否存在常數(shù)λ(λ>0),使得∠QHG=λ∠QGH恒成立?若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選作題,本題包括A、B、C、D四小題,請選定其中兩題,并在相應(yīng)的答題區(qū)域內(nèi)作答.若多做,則按作答的前兩題評分.解答時應(yīng)寫出文字說明、證明過程或演算步驟.
A.(幾何證明選講)
如圖,已知兩圓交于A、B兩點,過點A、B的直線分別與兩圓交于P、Q和M、N.求證:PM∥QN.
B.(矩陣與變換)
已知矩陣A的逆矩陣A-1=
10
02
,求矩陣A.
C.(極坐標(biāo)與參數(shù)方程)
在平面直角坐標(biāo)系xOy中,過橢圓
x2
12
+
y2
4
=1
在第一象限處的一點P(x,y)分別作x軸、y軸的兩條垂線,垂足分別為M、N,求矩形PMON周長最大值時點P的坐標(biāo).
D.(不等式選講)
已知關(guān)于x的不等式|x-a|+1-x>0的解集為R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)平面中,△ABC的兩個頂點的坐標(biāo)分別為數(shù)學(xué)公式,兩動點M、N滿足數(shù)學(xué)公式,向量數(shù)學(xué)公式數(shù)學(xué)公式共線.
(1)求△ABC的頂點C的軌跡方程;
(2)若過點P(0,a)的直線與(1)的軌跡相交于E、F兩點,求數(shù)學(xué)公式的取值范圍.
(3)若G(-a,0),H(2a,0),θ為C點的軌跡在第一象限內(nèi)的任意一點,則是否存在常數(shù)λ(λ>0),使得∠QHG=λ∠QGH恒成立?若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年湖北省黃岡市名校高考數(shù)學(xué)模擬試卷06(理科)(解析版) 題型:解答題

在直角坐標(biāo)平面中,△ABC的兩個頂點的坐標(biāo)分別為,兩動點M、N滿足,向量共線.
(1)求△ABC的頂點C的軌跡方程;
(2)若過點P(0,a)的直線與(1)的軌跡相交于E、F兩點,求的取值范圍.
(3)若G(-a,0),H(2a,0),θ為C點的軌跡在第一象限內(nèi)的任意一點,則是否存在常數(shù)λ(λ>0),使得∠QHG=λ∠QGH恒成立?若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案