如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.

(Ⅰ)求證:BD⊥平面PAC;

(Ⅱ)若PA=AB,求PB與AC所成角的余弦值.

答案:
解析:

  證明:(Ⅰ)因為四邊形ABCD是菱形,

  所以AC⊥BD.

  又因為PA⊥平面ABCD.

  所以PA⊥BD.

  所以BD⊥平面PAC.

  (Ⅱ)取AB、BC、PA中點,分別記為E、F、G,

  則EG∥PB,EF∥AC

  所以∠GEF即為PB與AC所成角

  ∵PA⊥平面ABCD ∴PA⊥AB,PA⊥AF

  又∵PA=AB=2,∠BAD= ∴GE= AF=EF=

  ∴GF=

  ∴cos∠GEF=

  ∴PB與AC所成角的余弦值


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為a的正方形,且PD=a,PA=PC=
2
a
,
(1)求證:PD⊥平面ABCD;(2)求二面角A-PB-D的平面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,且AD∥BC,∠ABC=∠PAD=
90°,側(cè)面PAD⊥底面ABCD.若PA=AB=BC=
12
AD.
(Ⅰ)求證:CD⊥平面PAC;
(Ⅱ)側(cè)棱PA上是否存在點E,使得BE∥平面PCD?若存在,指出點E的位置并證明,若不存在,請說明理由;
(Ⅲ)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD為等腰梯形,AB∥CD,AD=BC=2,對角線AC⊥BD于O,∠DAO=60°,且PO⊥平面ABCD,直線PA與底面ABCD所成的角為60°,M為PD上的一點.
(Ⅰ)證明:PD⊥AC;
(Ⅱ)求二面角A-PB-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為1的正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點,作EF⊥PB交PB于點F.
(1)證明PB⊥平面EFD;
(2)求二面角C-PB-D的大小.
(3)求點A到面EBD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,底面ABCD為正方形,PD=DC,E,F(xiàn)分別是AB,PB的中點.
(1)求證:EF∥平面PAD;
(2)求證:EF⊥CD;
(3)設(shè)PD=AD=a,求三棱錐B-EFC的體積.

查看答案和解析>>

同步練習(xí)冊答案