請你設(shè)計(jì)一個(gè)包裝盒,如圖所示,是邊長為的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)正四棱柱形狀的包裝盒,上是被切去的等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)
(1)若廣告商要求包裝盒側(cè)面積最大,試問應(yīng)取何值?
(2)若廣告商要求包裝盒容積最大,試問應(yīng)取何值?并求出此時(shí)包裝盒的高與底面邊長的比值.
    
(1)當(dāng)時(shí),取得最大值;(2)當(dāng)時(shí)取得極大值,也是最大值,此時(shí)包裝盒的高與底面邊長的比值為

試題分析:(1)先設(shè)包裝盒的高為,底面邊長為,寫出,的關(guān)系式,并注明的取值范圍,再利用側(cè)面積公式表示出包裝盒側(cè)面積關(guān)于的函數(shù)解析式,最后求出何時(shí)它取得最大值即可;
(2)利用體積公式表示出包裝盒容積關(guān)于的函數(shù)解析式,利用導(dǎo)數(shù)知識求出何時(shí)它取得的最大值即可.
設(shè)包裝盒的高為,底面邊長為
由已知得
(1)∵        2分
∴當(dāng)時(shí),取得最大值                  3分
(2)根據(jù)題意有    5分
。
得,(舍)或。
∴當(dāng)時(shí);當(dāng)時(shí)          7分
∴當(dāng)時(shí)取得極大值,也是最大值,此時(shí)包裝盒的高與底面邊長的比值為
即包裝盒的高與底面邊長的比值為                      10分.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)(a≠0)滿足,為偶函數(shù),且x=-2是函數(shù)的一個(gè)零點(diǎn).又>0).
(1)求函數(shù)的解析式;
(2)若關(guān)于x 的方程上有解,求實(shí)數(shù)的取值范圍;
(3)令,求的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)有函數(shù)組:①,;②,;③,;④,.其中表示同一個(gè)函數(shù)的有(  ).
A.①② B.②④C.①③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)滿足,則稱、在區(qū)間上的一組正交函數(shù),給出三組函數(shù):①;②;③.
其中為區(qū)間的正交函數(shù)的組數(shù)是(   )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)=ax2+bx+c(a≠0)的圖象關(guān)于直線對稱。據(jù)此可推測對任意的非0實(shí)數(shù)a、b、c、m、n、g關(guān)于x的方程m[f(x)]2+n f(x)+g=0的解集不可能是(     )
A.{1,3}B.{2,4}C.{1,2,3,4}D.{1,2,4,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某村莊擬修建一個(gè)無蓋的圓柱形蓄水池(不計(jì)厚度).設(shè)該蓄水池的底面半徑為米,高為米,體積為立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面積的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為元(為圓周率).
(1)將表示成的函數(shù),并求該函數(shù)的定義域;
(2)討論函數(shù)的單調(diào)性,并確定為何值時(shí)該蓄水池的體積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某工廠生產(chǎn)一種產(chǎn)品的原材料費(fèi)為每件40元,若用x表示該廠生產(chǎn)這種產(chǎn)品的總件數(shù),則電力與機(jī)器保養(yǎng)等費(fèi)用為每件0.05x元,又該廠職工工資固定支出12500元.
(1)把每件產(chǎn)品的成本費(fèi)P(x)(元)表示成產(chǎn)品件數(shù)x的函數(shù),并求每件產(chǎn)品的最低成本費(fèi);
(2)如果該廠生產(chǎn)的這種產(chǎn)品的數(shù)量x不超過3000件,且產(chǎn)品能全部銷售,根據(jù)市場調(diào)查:每件產(chǎn)品的銷售價(jià)Q(x)與產(chǎn)品件數(shù)x有如下關(guān)系:Q(x)=170-0.05x,試問生產(chǎn)多少件產(chǎn)品時(shí),總利潤最高?(總利潤=總銷售額-總成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對任意實(shí)數(shù)a,b,函數(shù)F(a,b)=(a+b-|a-b|),如果函數(shù)f(x)=-x2+2x+3,g(x)=x+1,那么函數(shù)G(x)=F(f(x),g(x))的最大值等于________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(5分)(2011•廣東)設(shè)f(x),g(x),h(x)是R上的任意實(shí)值函數(shù),如下定義兩個(gè)函數(shù)(f°g)(x)和((f•g)(x)對任意x∈R,(f°g)(x)=f(g(x));(f•g)(x)=f(x)g(x),則下列等式恒成立的是(       )
A.((f°g)•h)(x)=((f•h)°(g•h))(x)
B.((f•g)°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.((f•g)•h)(x)=((f•h)•(g•h))(x)

查看答案和解析>>

同步練習(xí)冊答案