精英家教網 > 高中數學 > 題目詳情
已知數列{bn}的前n項和為Sn,b1=1且點(n,Sn+n+2)在函數f(x)=log2x-1的反函數y=f-1(x)的圖象上.若數列{an}滿足a1=1,an=bn(
1
b1
+
1
b2
+…+
1
bn-1
) (n≥2,n∈N*)

(Ⅰ)求bn;
(Ⅱ)求證:
an+1
an+1
=
bn
bn+1
(n≥2,n∈N*)
;
(Ⅲ)求證:(1+
1
a1
)(1+
1
a2
)(1+
1
a3
)•…•(1+
1
an
)<
10
3
分析:(Ⅰ)由y=log2x-1,可得x=2y+1,故反函數為f-1(x)=2x+1,所以有Sn=2n+1-n-2,b1=1,再由前n項和與通項的關系求得bn=2n-1.
(Ⅱ)根據an=bn(
1
b1
+
1
b2
++
1
bn-1
)(n≥2,n∈N*)
,可得
an
bn
=
1
b1
+
1
b2
++
1
bn-1
,從而有
an+1
bn+1
=
1
b1
+
1
b2
++
1
bn-1
+
1
bn
,所以
an+1
bn+1
-
an
bn
=
1
bn
,從而有
an+1
bn+1
=
an
bn
+
1
bn
=
an+1
bn
,變形可得結論.
(Ⅲ)注意討論,當n=1時成立,當n≥2時,由(Ⅱ)知(1+
1
a1
)(1+
1
a2
)(1+
1
a3
)••(1+
1
an
)

=
a1+1
a1
a2+1
a2
a3+1
a3
••
an+1
an
=
a1+1
a1a2
a2+1
a3
a3+1
a4
••
an+1
an+1
an+1

=
2
3
b2
b3
b3
b4
••
bn
bn+1
an+1

=
2
3
b2
bn+1
an+1=2•
an+1
bn+1
=2(
1
b1
+
1
b2
++
1
bn-1
+
1
bn
)
=2(1+
1
3
++
1
2n-1
)再放縮求解.
解答:解:(Ⅰ)令y=log2x-1,則x=2y+1,故反函數為f-1(x)=2x+1,
∴Sn+n+2=2n+1,則Sn=2n+1-n-2,b1=1,(2分)
n≥2時,Sn-1=2n-n-1,∴Sn-Sn-1=2n-1,即bn=2n-1(n≥2),b1=1滿足該式,故bn=2n-1.(4分)
(Ⅱ)證明:∵an=bn(
1
b1
+
1
b2
++
1
bn-1
)(n≥2,n∈N*)

an
bn
=
1
b1
+
1
b2
++
1
bn-1
,
an+1
bn+1
=
1
b1
+
1
b2
++
1
bn-1
+
1
bn

an+1
bn+1
-
an
bn
=
1
bn
,從而
an+1
bn+1
=
an
bn
+
1
bn
=
an+1
bn
,
an+1
an+1
=
bn
bn+1
(n≥2,n∈N*)
.(8分)
(Ⅲ)證明;b1=1,b2=3,a1=1,a2=3,
當n=1時,左邊=1+
1
a1
=2<
10
3
=右邊.(9分)
當n≥2時,由(Ⅱ)知(1+
1
a1
)(1+
1
a2
)(1+
1
a3
)••(1+
1
an
)

=
a1+1
a1
a2+1
a2
a3+1
a3
••
an+1
an
=
a1+1
a1a2
a2+1
a3
a3+1
a4
••
an+1
an+1
an+1

=
2
3
b2
b3
b3
b4
••
bn
bn+1
an+1

=
2
3
b2
bn+1
an+1=2•
an+1
bn+1
=2(
1
b1
+
1
b2
++
1
bn-1
+
1
bn
)
.(11分)
1
b1
+
1
b2
++
1
bn-1
+
1
bn
=1+
1
3
++
1
2n-1

當k≥2時,
1
2k-1
=
2k+1-1
(2k-1)(2k+1-1)
2k+1
(2k-1)(2k+1-1)
=2(
1
2k-1
-
1
2k+1-1
)

1+
1
3
++
1
2n-1
<1+2[(
1
22-1
-
1
23-1
)+(
1
23-1
-
1
24-1
)++(
1
2n-1
-
1
2n+1-1
)]

=1+2(
1
3
-
1
2n+1-1
)<
5
3
,
(1+
1
a1
)(1+
1
a2
)(1+
1
a3
)••(1+
1
an
)<
10
3
.(14分)
點評:本題主要考查數列與函數,不等式的綜合運用,主要涉及了求反函數,數列前n項和與通項的關系以及放縮法,裂項法等.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

.在等比數列{an}中,an>0(n∈N*),公比q∈(0,1),且a1a5+2a3a5+a2a8=25,又2是a3與a5的等比中項.設bn=5-log2an
(1)求數列{bn}的通項公式;
(2)已知數列{bn}的前n項和為Sn,Tn=
1
S1
+
1
S2
+…+
1
Sn
,求Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{bn}的前n項和Sn=
3
2
n2-
1
2
n.數列{an}滿足(an3=4-(bn+2)n∈N*,數列{cn}滿足cn=anbn
(1)求數列{cn}的前n項和Tn
(2)若cn
1
4
m2+m-1對一切正整數n恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{bn}的前n項和Sn滿足bn=2-2Sn,則數列{bn}的通項公式bn=
2(
1
3
)n
2(
1
3
)n

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等差數列1,a,b,等比數列3,a+2,b+5.
求:
(1)以1,a,b為前三項的等差數列{an}的通項公式;
(2)已知數列{bn}的前n項和為Tn,且其通項bn=
1anan+1
,求Tn

查看答案和解析>>

同步練習冊答案