分析 (1)利用誘導(dǎo)公式化解可得f(α)
(2)將$α=-\frac{31π}{3}$代入可得f(α)的值;
(3)根據(jù)同角三角函數(shù)關(guān)系式求值即可.
解答 解:(1)$f(α)=\frac{{sin({π+α})cos({2π-α})tan({-α})}}{{tan({-π-α})cos({\frac{3π}{2}+α})}}$=$\frac{-sinαcosα•-tanα}{-tanα•sinα}$=-cosα
(2)當(dāng)$α=-\frac{31π}{3}$時,則f(α)=-cos($-\frac{31π}{3}$)=-cos($-10π-\frac{π}{3}$)=-cos$\frac{π}{3}$=$-\frac{1}{2}$.
(3)α是第三象限的角,且$sinα=-\frac{1}{5}$,
∴cosα=-$\sqrt{1-si{n}^{2}α}$=$-\frac{2\sqrt{5}}{5}$
那么:f(α)=-cosα=$\frac{{2\sqrt{5}}}{5}$.
點評 本題主要考察了同角三角函數(shù)關(guān)系式和誘導(dǎo)公式的應(yīng)用,屬于基本知識的考查.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 70πcm2 | B. | 70 cm2 | C. | 80cm2 | D. | 80πcm2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 該平面內(nèi)存在一向量$\overrightarrow a$不能表示$\overrightarrow a=m\overrightarrow{e_1}+n\overrightarrow{e_2}$,其中m,n為實數(shù) | |
B. | 若向量$m\overrightarrow{e_1}+n\overrightarrow{e_2}$與$\overrightarrow a$共線,則存在唯一實數(shù)λ使得$m\overrightarrow{e_1}+n\overrightarrow{e_2}=λ\overrightarrow a$ | |
C. | 若實數(shù)m,n使得$m\overrightarrow{e_1}+n\overrightarrow{e_2}=\overrightarrow 0$,則m=n=0 | |
D. | 對平面中的某一向量$\overrightarrow a$,存在兩對以上的實數(shù)m,n使得$\overrightarrow a=m\overrightarrow{e_1}+n\overrightarrow{e_2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,4) | B. | (0,3) | C. | (0,2) | D. | (0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | α⊥γ且l⊥m | B. | α⊥γ且m∥β | C. | m∥β且l⊥m | D. | α∥β且α⊥γ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com