20.已知$f(α)=\frac{{sin({π+α})cos({2π-α})tan({-α})}}{{tan({-π-α})cos({\frac{3π}{2}+α})}}$.
(1)化簡f(α);
(2)當(dāng)$α=-\frac{31π}{3}$時,求f(α)的值;
(3)若α是第三象限的角,且$sinα=-\frac{1}{5}$,求f(α)的值.

分析 (1)利用誘導(dǎo)公式化解可得f(α)
(2)將$α=-\frac{31π}{3}$代入可得f(α)的值;
(3)根據(jù)同角三角函數(shù)關(guān)系式求值即可.

解答 解:(1)$f(α)=\frac{{sin({π+α})cos({2π-α})tan({-α})}}{{tan({-π-α})cos({\frac{3π}{2}+α})}}$=$\frac{-sinαcosα•-tanα}{-tanα•sinα}$=-cosα
(2)當(dāng)$α=-\frac{31π}{3}$時,則f(α)=-cos($-\frac{31π}{3}$)=-cos($-10π-\frac{π}{3}$)=-cos$\frac{π}{3}$=$-\frac{1}{2}$.
(3)α是第三象限的角,且$sinα=-\frac{1}{5}$,
∴cosα=-$\sqrt{1-si{n}^{2}α}$=$-\frac{2\sqrt{5}}{5}$
那么:f(α)=-cosα=$\frac{{2\sqrt{5}}}{5}$.

點評 本題主要考察了同角三角函數(shù)關(guān)系式和誘導(dǎo)公式的應(yīng)用,屬于基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)函數(shù)f(x)=ax2+bx+c(a,b,c∈R),若函數(shù)y=f(x)ex在x=-1處取得極值,則下列圖象不可能為y=f(x)的圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,ω>0,|φ|<$\frac{π}{2}$)的圖象(部分)如圖所示,則f(x)的解析式是f(x)=2sin(πx+$\frac{π}{6}$),x∈R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知扇形的圓心角是72°,半徑為20cm,則扇形的面積為(  )
A.70πcm2B.70 cm2C.80cm2D.80πcm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如果$\overrightarrow{e_1}$,$\overrightarrow{e_2}$是平面內(nèi)所有向量的一組基底,那么( 。
A.該平面內(nèi)存在一向量$\overrightarrow a$不能表示$\overrightarrow a=m\overrightarrow{e_1}+n\overrightarrow{e_2}$,其中m,n為實數(shù)
B.若向量$m\overrightarrow{e_1}+n\overrightarrow{e_2}$與$\overrightarrow a$共線,則存在唯一實數(shù)λ使得$m\overrightarrow{e_1}+n\overrightarrow{e_2}=λ\overrightarrow a$
C.若實數(shù)m,n使得$m\overrightarrow{e_1}+n\overrightarrow{e_2}=\overrightarrow 0$,則m=n=0
D.對平面中的某一向量$\overrightarrow a$,存在兩對以上的實數(shù)m,n使得$\overrightarrow a=m\overrightarrow{e_1}+n\overrightarrow{e_2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知f(x)為定義在(0,+∞)上的可導(dǎo)函數(shù),且f(x)>xf'(x),則不等式${x^2}f(\frac{1}{x})-f(x)<0$的解集為( 。
A.(0,4)B.(0,3)C.(0,2)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知直線m、l與平面α、β、γ滿足β∩γ=l,l∥α,m?α,m⊥γ,則下列命題一定正確的是( 。
A.α⊥γ且l⊥mB.α⊥γ且m∥βC.m∥β且l⊥mD.α∥β且α⊥γ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)$f(x)=Asin(3x+\frac{π}{6})+B(A>0)$的最大值為2,最小值為0.
(1)求$f(\frac{7π}{18})$的值; 
(2)將函數(shù)y=f(x)的圖象向右平移$\frac{π}{6}$個單位后,再將圖象上所有點的縱坐標(biāo)擴(kuò)大到原來$\sqrt{2}$的倍,橫坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求方程$g(x)=\frac{{\sqrt{2}}}{2}$的解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某獎勵基金發(fā)放方式為:每年一次,把獎金總額平均分成6份,獎勵在某6個方面為人類作出最有益貢獻(xiàn)的人,每年發(fā)放獎金的總金額是基金在該年度所獲利息的一半,另一半利息存入基金總額,以便保證獎金數(shù)逐年增加.假設(shè)基金平均年利率為r=6.24%,2000年該獎發(fā)放后基金總額約為21000萬元.用an表示為第n(n∈N*)年該獎發(fā)放后的基金總額(2000年為第一年).
(1)用a1表示a2與a3,并根據(jù)所求結(jié)果歸納出an的表達(dá)式;
(2)試根據(jù)an的表達(dá)式判斷2011年度該獎各項獎金是否超過150萬元?并計算從2001年到2011年該獎金累計發(fā)放的總額.
(參考數(shù)據(jù):1.062410=1.83,1.0329=1.32,1.031210=1.36,1.03211=1.40)

查看答案和解析>>

同步練習(xí)冊答案