某幾何體是直三棱柱與圓錐的組合體,其直觀圖和三視圖如圖所示,正視圖為正方形,其中俯視圖中橢圓的離心率為
 
考點:橢圓的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)三視圖的性質(zhì)得到俯視圖中橢圓的短軸長和長周長,再根據(jù)橢圓的性質(zhì)a2-b2=c2,和離心率公式e=
c
a
,計算即可.
解答: 解:設正視圖正方形的邊長為m,根據(jù)正視圖與俯視圖的長相等,得到俯視圖中橢圓的短軸長2b=m,
俯視圖的寬就是圓錐底面圓的直徑
2
m,得到俯視圖中橢圓的長軸長2a=
2
m,
則橢圓的焦距c=
a2-b2
=
1
2
m,
根據(jù)離心率公式得,e=
a
=
2
2

故答案為:
2
2
點評:本題主要考查了橢圓的離心率公式,以及三視圖的問題,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

圓心在原點上與直線x+y-2=0相切的圓的方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知變量x,y滿足
2x-y≤0
x-2y+3≥0
x≥0
,則z=log2(x2+y2-4x+2y+4)的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若x,y滿足約束條件
2x-y≤1
x+y≥2
y-x≤2
,目標函數(shù)z=kx+2y(k∈N*)僅在點(1,1)處取得最小值,則k的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設互不相等的平面向量組
ai
(i∈N*)滿足條件:①|(zhì)
ai
|=1;②
ai
ai+1
=0.若記
Sn
=
a1
+
a2
+…+
an
(n≥2),則|
Sn
|的取值集合為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
16-x2
+lg(1-tanx)的定義域是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知(2x-xlgx8的展開式中,二項式系數(shù)最大的項的值等于1120,則實數(shù)x的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是某班甲乙兩同學高三各次聯(lián)考的數(shù)學成績的莖葉圖.根據(jù)統(tǒng)計學知識判斷甲、乙兩同學中發(fā)揮較穩(wěn)定的是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知角θ的頂點與原點重合,始邊與x軸的非負半軸重合,終邊在直線y=2x上,則cos2θ-sin2θ等于
 

查看答案和解析>>

同步練習冊答案