如果兩條曲線的方程F1(x,y)=0和F2(x,y)=0,它們的交點(diǎn)Mx0,y0),求證:方程F1(x,y)+λF2(x,y)=0表示的曲線也經(jīng)過M點(diǎn)。(λ為任意常數(shù))

答案:
解析:

證明:∵M(x0,y0)是曲線F1(x,y)=0和F2(x,y)=0的交點(diǎn),

F1x0,y0)=0,F2(x0,y0)=0。

F1(x0,y0)+λF2(x0,y0)=0(λ∈R)

M(x0,y0)在方程F1(x,y)+λF2(x,y)=0所表示的曲線上。


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•綿陽二模)已知函數(shù)f(x)=
13
x3-2x2+3x(x∈R)的圖象為曲線C.
(1)求曲線C上任意一點(diǎn)處的切線的斜率的取值范圍;
(2)若曲線C上存在兩點(diǎn)處的切線互相垂直,求其中一條切線與曲線C的切點(diǎn)的橫坐標(biāo)取值范圍;
(3)試問:是否存在一條直線與曲線C同時(shí)切于兩個(gè)不同點(diǎn)?如果存在,求出符合條件的所有直線方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖南模擬)選做題(請(qǐng)考生在第16題的三個(gè)小題中任選兩題作答,如果全做,則按前兩題記分,要寫出必要的推理與演算過程)
(1)如圖,已知Rt△ABC的兩條直角邊BC,AC的長(zhǎng)分別為3cm,4cm,以AC為直徑作圓與斜邊AB交于點(diǎn)D,試求BD的長(zhǎng).
(2)已知曲線C的參數(shù)方程為
x=1+cosθ
y=sinθ
(θ為參數(shù)),求曲線C上的點(diǎn)到直線x-y+1=0的距離的最大值.
(3)若a,b是正常數(shù),a≠b,x,y∈(0,+∞),則
a2
x
+
b2
y
(a+b)2
x+y
,當(dāng)且僅當(dāng)
a
x
=
b
y
時(shí)上式取等號(hào).請(qǐng)利用以上結(jié)論,求函數(shù)f(x)=
2
x
+
9
1-2x
(x∈0,
1
2
)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

選做題(請(qǐng)考生在第16題的三個(gè)小題中任選兩題作答,如果全做,則按前兩題記分,要寫出必要的推理與演算過程)
(1)如圖,已知Rt△ABC的兩條直角邊BC,AC的長(zhǎng)分別為3cm,4cm,以AC為直徑作圓與斜邊AB交于點(diǎn)D,試求BD的長(zhǎng).
(2)已知曲線C的參數(shù)方程為數(shù)學(xué)公式(θ為參數(shù)),求曲線C上的點(diǎn)到直線x-y+1=0的距離的最大值.
(3)若a,b是正常數(shù),a≠b,x,y∈(0,+∞),則數(shù)學(xué)公式+數(shù)學(xué)公式數(shù)學(xué)公式,當(dāng)且僅當(dāng)數(shù)學(xué)公式=數(shù)學(xué)公式時(shí)上式取等號(hào).請(qǐng)利用以上結(jié)論,求函數(shù)f(x)=數(shù)學(xué)公式+數(shù)學(xué)公式(x∈0,數(shù)學(xué)公式)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年四川省成都市石室中學(xué)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

已知函數(shù)f(x)=x3-2x2+3x(x∈R)的圖象為曲線C.
(1)求曲線C上任意一點(diǎn)處的切線的斜率的取值范圍;
(2)若曲線C上存在兩點(diǎn)處的切線互相垂直,求其中一條切線與曲線C的切點(diǎn)的橫坐標(biāo)取值范圍;
(3)試問:是否存在一條直線與曲線C同時(shí)切于兩個(gè)不同點(diǎn)?如果存在,求出符合條件的所有直線方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南省十二校高三(下)4月聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

選做題(請(qǐng)考生在第16題的三個(gè)小題中任選兩題作答,如果全做,則按前兩題記分,要寫出必要的推理與演算過程)
(1)如圖,已知Rt△ABC的兩條直角邊BC,AC的長(zhǎng)分別為3cm,4cm,以AC為直徑作圓與斜邊AB交于點(diǎn)D,試求BD的長(zhǎng).
(2)已知曲線C的參數(shù)方程為(θ為參數(shù)),求曲線C上的點(diǎn)到直線x-y+1=0的距離的最大值.
(3)若a,b是正常數(shù),a≠b,x,y∈(0,+∞),則+,當(dāng)且僅當(dāng)=時(shí)上式取等號(hào).請(qǐng)利用以上結(jié)論,求函數(shù)f(x)=+(x∈0,)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案