研究“剎車距離”對(duì)于安全行車及分析交通事故責(zé)任都有一定的作用,所謂“剎車距離”就是指行駛中的汽車,從剎車開始到停止,由于慣性的作用而又繼續(xù)向前滑行的一段距離.為了測(cè)定某種型號(hào)汽車的剎車性能(車速不超過140km/h),對(duì)這種汽車進(jìn)行測(cè)試,測(cè)得的數(shù)據(jù)如表:
剎車時(shí)的車速(km/h)0102030405060
剎車距離(m)00.31.02.13.65.57.8
(1)以車速為x軸,以剎車距離為y軸,在給定坐標(biāo)系中畫出這些數(shù)據(jù)的散點(diǎn)圖;
(2)觀察散點(diǎn)圖,估計(jì)函數(shù)的類型,并確定一個(gè)滿足這些數(shù)據(jù)的函數(shù)表達(dá)式;
(3)該型號(hào)汽車在國(guó)道上發(fā)生了一次交通事故,現(xiàn)場(chǎng)測(cè)得剎車距離為46.5m,請(qǐng)推測(cè)剎車時(shí)的速度為多少?請(qǐng)問在事故發(fā)生時(shí),汽車是超速行駛還是正常行駛?
考點(diǎn):函數(shù)解析式的求解及常用方法,散點(diǎn)圖
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)依題意描點(diǎn)即可.
(2)設(shè)拋物線為y=ax2+bx+c,再根據(jù)表格中所給數(shù)據(jù)可得方程組,解出a,b,c即可.
(3)當(dāng)y=46.5時(shí),代入函數(shù)關(guān)系式解出x的值,根據(jù)題意進(jìn)行取舍即可.
解答: (1)解如圖所示
(2)2)根據(jù)圖象可估計(jì)為拋物線.
∴設(shè)y=ax2+bx+c.
把表內(nèi)前三對(duì)數(shù)代入函數(shù),可得
c=0
100a+10b+c=0.3
400a+20b+c=1.2

解得:
a=0.002
b=0.01
c=0

∴y=0.002x2+0.01x(0≤x≤140).
經(jīng)檢驗(yàn),其他各數(shù)均滿足函數(shù)(或均在函數(shù)圖象上);
(3)當(dāng)y=46.5時(shí),46.5=0.002x2+0.01x.
整理可得x2+5x-23250=0.
解之得x1=150,x2=-155(不合題意,舍去).
所以可以推測(cè)剎車時(shí)的速度為150千米/時(shí).
∵150>140,
∴汽車發(fā)生事故時(shí)超速行駛.汽車屬于超速行駛.
點(diǎn)評(píng):本題考查點(diǎn)的坐標(biāo)的求法及二次函數(shù)的實(shí)際應(yīng)用.此題為數(shù)學(xué)建模題,借助二次函數(shù)解決實(shí)際問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,A={x|x2-2x≤0},B={y|y=cosx,x∈R},則圖中陰影部分表示的區(qū)間是( 。
A、[0,1]
B、[-1,2]
C、(-∞,-1)∪(2,+∞)
D、(-∞,-1]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2是橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的上、下焦點(diǎn),F(xiàn)1是拋物線C2:x2=4y的焦點(diǎn),點(diǎn)M是C1與C2在第二象限的交點(diǎn),且|MF1|=
5
3

(1)求橢圓C1的方程;
(2)與圓x2+(y+1)2=1相切的直線l:y=k(x+t),kt≠0交橢圓C于A,B兩點(diǎn),若橢圓C上一點(diǎn)P滿足
OA
+
OB
OP
,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2014年4月10日至12日,第七屆中國(guó)西部國(guó)際化工博覽會(huì)在成都舉行,為了使志愿者更好地服務(wù)于大會(huì),主辦方?jīng)Q定對(duì)40名志愿者進(jìn)行一次考核,考核分為兩個(gè)科目:“成都文化”和“志愿者知識(shí)”,其中“成都文化”的考核成績(jī)?yōu)?0分,8分,6分,4分共四個(gè)檔次;“志愿者知識(shí)”的考核結(jié)果分為A、B、C、D共四個(gè)等級(jí),這40名志愿者的考核結(jié)果如表:
成都文化(分值)
人數(shù)
志愿者知識(shí)等級(jí)
10分 8分 6分 4分
A 5 1 7 0
B 3 2 7 1
C 1 0 6 3
D 1 1 2 0
(1)求這40名志愿者“成都文化”考核成績(jī)的平均值;
(2)從“成都文化”考核成績(jī)?yōu)?0分的志愿者中挑選3人,記“志愿者知識(shí)”考核結(jié)果為A等級(jí)的人數(shù)為ξ.求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,已知四點(diǎn)A(
2
,
3
),B(-2,0),C(
6
,1),D(-
2
,-
3
)中有且只有三點(diǎn)在橢圓E: 
x2
a2
+
y2
b2
=1(a>b>0)上.
(1)求橢圓E的方程;
(2)若P是圓x2+y2=12上的一個(gè)動(dòng)點(diǎn),過動(dòng)點(diǎn)P作直線l1、l2,使得l1、l2與橢圓E都相切,求證:l1⊥l2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)點(diǎn)P在曲線y=x2,從原點(diǎn)向A(2,4)移動(dòng),讓直線OP與曲線y=x2所圍成圖形面積為S1,直線OP、直線x=2與曲線y=x2所圍成圖形的面積為S2
(1)當(dāng)S1=S2時(shí),求點(diǎn)P的坐標(biāo);
(2)當(dāng)S1+S2有最小值時(shí),求點(diǎn)P的坐標(biāo)及此最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x-2
的定義域?yàn)锳,函數(shù)g(x)=
2
x
(1≤x≤2)的值域?yàn)锽.
(Ⅰ)求A∩B;
(Ⅱ)若C={y|a<y<2a-1},且C⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某超市進(jìn)行促銷活動(dòng),規(guī)定消費(fèi)者消費(fèi)每滿100元可抽獎(jiǎng)一次.抽獎(jiǎng)規(guī)則:從裝有三種只有顏色不同的球的袋中隨機(jī)摸出一球,記下顏色后放回,依顏色分為一、二、三等獎(jiǎng),一等獎(jiǎng)獎(jiǎng)金15元,二等獎(jiǎng)獎(jiǎng)金10元,三等獎(jiǎng)獎(jiǎng)金5元.活動(dòng)以來,中獎(jiǎng)結(jié)果統(tǒng)計(jì)如圖所示.消費(fèi)者甲購(gòu)買了238元的商品,準(zhǔn)備參加抽獎(jiǎng).以頻率作為概率,解答下列各題.
(Ⅰ)求甲恰有一次獲得一等獎(jiǎng)的概率;
(Ⅱ)求甲獲得20元獎(jiǎng)金的概率;
(Ⅲ)記甲獲得獎(jiǎng)金金額為X,求X的分布列及期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y∈R,滿足2≤y≤4-x,x≥1,則
x2+y2+2x-2y+2
xy-x+y-1
的最大值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案