已知函數(shù)f(x)=loga(a-ax)(a>1)
(1)求f(x)的定義域、值域;
(2)判斷f(x)的單調(diào)性,并證明.

解:(1)由題意可得:a-ax>0,即ax<a,
∵a>1,
∴由指數(shù)函數(shù)的性質(zhì)可得:x<1,
∴函數(shù)f(x)的定義域為:(-∞,1).
∵0<a-ax<a,并且a>1,
∴l(xiāng)oga(a-ax)<1,
∴函數(shù)f(x)的值域為:(-∞,1).
(2)減函數(shù).
證明:∵函數(shù)f(x)=loga(a-ax),
∴f′(x)=
∵a-ax>0,-ax<0,
∴f′(x)=<0,
∴f(x)在定義域內(nèi)是單調(diào)減函數(shù).
分析:(1)由題得:a-ax>0,由a>1并且結(jié)合指數(shù)函數(shù)的性質(zhì)可得:x<1,由0<a-ax<a,并且a>1,由對數(shù)函數(shù)的性質(zhì)得到loga(a-ax)<1,進(jìn)而得到函數(shù)的定義域與值域.
(2)減函數(shù).由函數(shù)的解析式可得:f′(x)=,再結(jié)合題中的條件得到函數(shù)的導(dǎo)數(shù)小于0,進(jìn)而根據(jù)導(dǎo)數(shù)的意義得到函數(shù)的單調(diào)性.
點評:本題主要考查指數(shù)函數(shù)、對數(shù)函數(shù)、復(fù)合函數(shù)的性質(zhì),如函數(shù)的定義域,值域,單調(diào)性,而證明函數(shù)的單調(diào)性可以利用單調(diào)性的定義或者利用導(dǎo)數(shù)的意義,此題是考試命題的熱點之一.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)當(dāng)a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數(shù)f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當(dāng)x≥e時,對于函數(shù)f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項和為Sn,則S2012的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點;
(Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當(dāng)x>0時,函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案