已知x2+x-2=2且x>1,則x2-x-2

[  ]
A.

2或-2

B.

-2

C.

D.

2

答案:D
解析:

(x2-x-2)2=(x2+x-2)2-4=(2)2-4=4,∴x2-x-2=2.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:遼寧省錦州中學(xué)2012屆高三上學(xué)期第一次月考數(shù)學(xué)文科試題 題型:013

已知M={x|x2>4},N={x|≥1},則CRM∩N=

[  ]
A.

{x|1<x≤2}

B.

{x|-2≤x≤1}

C.

{x|1≤x≤.2}

D.

{x|x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:陜西省2009屆高三教學(xué)質(zhì)量檢測(cè)模擬試題(一)、數(shù)學(xué) 題型:044

已知二次函數(shù)滿足以下條件:

①圖像關(guān)于直線x=對(duì)稱;②f(1)=0;③其圖像可由y=x2-1平移得到.

(Ⅰ)求y=f(x)表達(dá)式;

(Ⅱ)若數(shù)列{an},{bn}對(duì)任意的實(shí)數(shù)x都滿足f(x)·g(x)+anx+bn=xn+1(n∈N*),其中g(shù)(x)是定義在實(shí)數(shù)集R上的一個(gè)函數(shù),求數(shù)列{an},{bn}的通項(xiàng)公式.

(Ⅲ)設(shè)圓Cn:(x-an)2+(y-bn)2,(n∈N*),若圓Cn與圓Cn+1外切,且{rn}是各項(xiàng)都為正數(shù)的等比數(shù)列,求數(shù)列{rn}的公比q的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年全國(guó)普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(新課標(biāo)1卷解析版) 題型:解答題

(本小題滿分共12分)已知函數(shù)f(x)=x2+ax+b,g(x)=ex(cx+d),若曲線y=f(x)和曲線y=g(x)都過(guò)點(diǎn)P(0,2),且在點(diǎn)P處有相同的切線y=4x+2

(Ⅰ)求a,b,c,d的值

(Ⅱ)若x≥-2時(shí),f(x)≤kg(x),求k的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆福建省泉州市高二下學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知,設(shè)是方程的兩個(gè)根,不等式對(duì)任意實(shí)數(shù)恒成立;函數(shù)有兩個(gè)不同的零點(diǎn).求使“P且Q”為真命題的實(shí)數(shù)的取值范圍.

【解析】本試題主要考查了命題和函數(shù)零點(diǎn)的運(yùn)用。由題設(shè)x1+x2=a,x1x2=-2,

∴|x1-x2|=.

當(dāng)a∈[1,2]時(shí),的最小值為3. 當(dāng)a∈[1,2]時(shí),的最小值為3.

要使|m-5|≤|x1-x2|對(duì)任意實(shí)數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判別式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

可得到要使“P∧Q”為真命題,只需P真Q真即可。

解:由題設(shè)x1+x2=a,x1x2=-2,

∴|x1-x2|=.

當(dāng)a∈[1,2]時(shí),的最小值為3.

要使|m-5|≤|x1-x2|對(duì)任意實(shí)數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判別式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

綜上,要使“P∧Q”為真命題,只需P真Q真,即

解得實(shí)數(shù)m的取值范圍是(4,8]

 

查看答案和解析>>

同步練習(xí)冊(cè)答案