已知圓C:x2+y2=2與直線l:x+y+=0,則圓C被直線l所截得的弦長為(  )

A.1         B.         C.2           D.

 

【答案】

C

【解析】

試題分析:圓C:x2+y2=2的圓心(0,0)到直線l:x+y+=0的距離為,

所以,由弦長的一半、半徑、圓心到直線(弦)的距離構(gòu)成的直角三角形得,圓C被直線l所截得的弦長為,故選C.

考點:直線與圓的位置關(guān)系,點到直線的距離公式.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2-8x+y2-9=0,過點M(1,3)作直線交圓C于A,B兩點,△ABC面積的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2-2ax+y2-10y+a2=0(a>0)截直線x+y-5=0的弦長為5
2
;
(1)求a的值;
(2)求過點P(10,15)的圓的切線所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2-2x+y2-2=0,點A(-2,0)及點B(4,a),從A點觀察B點,要使視線不被圓C擋住,則實數(shù)a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2-2x+y2=0,直線l:x+y-4=0.
(1)若直線l′⊥l且被圓C截得的弦長為
3
,求直線l′的方程;
(2)若點P是直線l上的動點,PA、PB與圓C相切于點A、B,求四邊形PACB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2-2ax+y2-4y+a2=0(a>0)及直線l:x-y+3=0,當(dāng)直線l被圓C截得的弦長為2
2
時.
(Ⅰ)求a的值;
(Ⅱ)求過點(3,5)并與圓C相切的切線方程.

查看答案和解析>>

同步練習(xí)冊答案