用數(shù)學(xué)歸納法證明不等式:+++…+>1(n∈N*且n>1).

 

見解析

【解析】

試題分析:直接利用數(shù)學(xué)歸納法的證明步驟證明不等式,(1)驗(yàn)證n=2時(shí)不等式成立;(2)假設(shè)當(dāng)n=k(k≥2)時(shí)成立,利用放縮法證明n=k+1時(shí),不等式也成立.

證明:(1)當(dāng)n=2時(shí),左邊=,∴n=2時(shí)成立(2分)

(2)假設(shè)當(dāng)n=k(k≥2)時(shí)成立,即

那么當(dāng)n=k+1時(shí),左邊=

=

>1+>1

∴n=k+1時(shí)也成立(7分)

根據(jù)(1)(2)可得不等式對所有的n>1都成立(8分)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-6 2.4一次同余方程練習(xí)卷(解析版) 題型:填空題

把十進(jìn)制數(shù)51化為二進(jìn)制數(shù),則51= (2).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-6 1.2最大公因數(shù)與最小公倍數(shù) 題型:選擇題

數(shù)4557,1953,5115的最大公約數(shù)為( )

A.93 B.31 C.651 D.217

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-6 1.1整除練習(xí)卷(解析版) 題型:選擇題

將390化為四進(jìn)制數(shù),則這個四進(jìn)制數(shù)的末位數(shù)字是( )

A.0 B.1 C.2 D.3

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-6 1.1整除練習(xí)卷(解析版) 題型:選擇題

下列幾個不同進(jìn)制數(shù)最大的是( )

A.3(10) B.11(2) C.3(8) D.11(3)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-5 4.2數(shù)學(xué)歸納法證明不等式舉例(解析版) 題型:填空題

設(shè),則f(k+1)﹣f(k)= .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-5 4.1數(shù)學(xué)歸納法練習(xí)卷(解析版) 題型:選擇題

用數(shù)學(xué)歸納法證明等式 的過程中,由n=k遞推到n=k+1時(shí)不等式左邊( )

A.增加了項(xiàng) B.增加了項(xiàng)

C.增加了項(xiàng) D.以上均不對

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-5 4.1數(shù)學(xué)歸納法練習(xí)卷(解析版) 題型:選擇題

(2012•成都一模)在用數(shù)學(xué)歸納法證明f(n)=++…+<1(n∈N*,n≥3)的過程中:假設(shè)當(dāng)n=k(k∈N*,k≥3)時(shí),不等式f(k)<1成立,則需證當(dāng)n=k+1時(shí),f(k+1)<1也成立.若f(k+1)=f(k)+g(k),則g(k)=( )

A.+ B.+ C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-5 2.3反證法與放縮法練習(xí)卷(解析版) 題型:選擇題

用反證法證明:“a>b”,應(yīng)假設(shè)為( )

A.a>b B.a<b C.a=b D.a≤b

 

查看答案和解析>>

同步練習(xí)冊答案