若斜率為2的動直線l與拋物線x2=4y相交于不同的兩點A、B,O為坐標(biāo)原點.
(1)若線段AB上的點P滿足數(shù)學(xué)公式,求動點P的軌跡方程;
(2)對于(1)中的點P,若點O關(guān)于點P的對稱點為Q,且數(shù)學(xué)公式,求直線l在y軸上截距的取值范圍.

解:(1)設(shè)l的方程為y=2x+b,l與C的交點坐標(biāo)分別為A(x1,y1)、B(x2,y2),
點P(x,y),由,
,依題意,
故所求的軌跡方程為x=4(y>4).
(2)(理)由(1)知x1+x2=8,y1+y2=2(x1+x2)+2b=16+2b,
,
解得-26≤b≤10,注意到b>-4,
∴-4<b≤10
分析:(1)設(shè)l的方程為y=2x+b,l與C的交點坐標(biāo)分別為A(x1,y1)、B(x2,y2),點P(x,y),由,得,由此能得到所求的軌跡方程.
(2)由x1+x2=8,y1+y2=2(x1+x2)+2b=16+2b,知,由此能夠求出直線l在y軸上截距的取值范圍.
點評:本題考查動點P的軌跡方程和直線l在y軸上截距的取值范圍.解題時要認(rèn)真審題,合理地運(yùn)用圓錐曲線的性質(zhì),注意靈活地進(jìn)行等價轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若斜率為2的動直線l與拋物線x2=4y相交于不同的兩點A、B,O為坐標(biāo)原點.
(1)若線段AB上的點P滿足
AP
=
PB
,求動點P的軌跡方程;
(2)對于(1)中的點P,若點O關(guān)于點P的對稱點為Q,且|
OQ
|≤4
85
,求直線l在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若斜率為2的動直線l與拋物線x2=4y相交于不同的兩點A、B,O為坐標(biāo)原點.
(1)求線段AB中點P的軌跡方程;
(2)若
OA
OB
≤60
,求直線l在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若斜率為2的動直線l與拋物線x2=4y相交于不同的兩點A、B,O為坐標(biāo)原點.
(1)求線段AB中點P的軌跡方程;
(2)若數(shù)學(xué)公式,求直線l在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市閔行區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

若斜率為2的動直線l與拋物線x2=4y相交于不同的兩點A、B,O為坐標(biāo)原點.
(1)求線段AB中點P的軌跡方程;
(2)若,求直線l在y軸上截距的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案