下列函數(shù)中與y=x相同的是(  )
A、y=(
x
2
B、y=
3x3
C、y=
x2
D、y=|x|
考點(diǎn):判斷兩個(gè)函數(shù)是否為同一函數(shù)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題求函數(shù)的定義域及對(duì)應(yīng)關(guān)系,從而求得.
解答: 解:y=(
x
2的定義域是[0,+∞),定義域不同;
y=
3x3
=x的定義域是R,對(duì)應(yīng)關(guān)系也相同,故相同;
y=
x2
=|x|,對(duì)應(yīng)關(guān)系不同;
y=|x|,對(duì)應(yīng)關(guān)系不同;
故選B.
點(diǎn)評(píng):本題考查了函數(shù)相同的判斷,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)拋物線y2=2mx(m>0)的焦點(diǎn)F傾斜角為
π
4
的直線交拋物線于A、B兩點(diǎn),弦長(zhǎng)為|AB|.命題p:|AB|≥4,命題q:方程
x2
m-2
+
y2
m+1
=1(m∈R)表示雙曲線,如p∧q為假,p∨q為真,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在四棱錐P-ABCD中,△PAB是邊長(zhǎng)為2的正三角形,底面ABCD為菱形,O為AB的中點(diǎn),且PO⊥平面ABCD,OD與AC交于點(diǎn)F,E為PD上一點(diǎn),且PD=3PE.
(1)求證:平面ACE⊥平面ABCD;
(2)若∠ABC=60°,求異面直線AB與CE所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a1=-11,a4+a6=-6,S5等于( 。
A、-35B、-30
C、30D、20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知角α的終邊經(jīng)過(guò)點(diǎn)P(-4,-3),則sinα的值為( 。
A、-
3
5
B、-
4
5
C、
3
5
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

第十二屆全運(yùn)會(huì)于2013年8月31日在沈陽(yáng)舉行,運(yùn)動(dòng)會(huì)期間從來(lái)自A大學(xué)的2名志愿者和來(lái)自B大學(xué)的4名志愿者中隨機(jī)抽取2人到體操比賽場(chǎng)館服務(wù),至少有一名A大學(xué)志愿者的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2sin(-210°)的值為( 。
A、-
1
2
B、1
C、
1
2
D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)復(fù)數(shù)z1=1-i,z2=2+i,其中i為虛數(shù)單位,則z1•z2的虛部為( 。
A、-1B、1C、-iD、i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2014年5月31日,江西宜春的高三考生柳艷兵與易征勇在客運(yùn)班車上與持刀歹徒英勇搏斗的事跡.事后不久,江西某市迅速在全市高中開(kāi)展了“向柳艷兵與易征勇同學(xué)學(xué)習(xí)”的宣傳活動(dòng),該市某高中就這一宣傳活動(dòng)在該校師生中抽取了120人進(jìn)行問(wèn)卷調(diào)查,調(diào)查結(jié)果如下:
 所持態(tài)度 很有必要 有必要 意義不大
 人數(shù)(單位:人) 60 40 20
(1)若從這120人中按照分層抽樣的方法隨機(jī)抽取6人進(jìn)行座談,再?gòu)倪@6人中隨機(jī)抽取3人作進(jìn)一步調(diào)查,求這3人中至少有1人態(tài)度為“很有必要”的概率;
(2)現(xiàn)從(1)所抽取的6人的問(wèn)卷中每次抽取1份,且不重復(fù)抽取,直至確定出所有態(tài)度為“很有必要”的問(wèn)卷為止,記所要抽取的次數(shù)為X,求X的分布列及期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案