精英家教網 > 高中數學 > 題目詳情

滿足不等式log2x+log2(3·2n-1-x)≥2n-1的正整數x的個數記為an,數列{an}的前n項和記為Sn,則Sn

[  ]

A.2nn-1

B.2n-1

C.2n+1

D.2nn-1

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設f(k)是滿足不等式log2x+log2(3•2k-1-x)≥2k-1(k∈N*)的正整數x的個數.
(1)求f(k)的解析式;
(2)記Sn=f(1)+f(2)+…+f(n),Pn=n2+n-1(n∈N*)試比較Sn與Pn的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(k)是滿足不等式log2x+log2(5•2k-1-x)≥2k(k∈N*)的自然數x的個數.
(1)求f(k)的函數解析式;
(2)Sn=f(1)+f(2)+…+f(n),求Sn;
(3)設Pn=2n+1+n-3,由(2)中Sn及Pn構成函數Tn,Tn=
log2(Sn-Pn)log2(Sn+1-Pn+1)-10.5
,求Tn的最小值與最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

滿足不等式log2x+log2(3•2n-1-x)≥2n-1(n∈N*)的正整數x的個數記為an,數列{an}的前n項和記為Sn,則Sn=( 。
A、2n+n-1B、2n-1C、2n+1D、2n-n-1

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(k)是滿足不等式log2x+log2(3•2k-1-x)≥2K-1,(k∈N)的自然數x的個數,
(1)求f(x)的解析式;
(2)記Sn=f(1)+f(2)+…+f(n),求Sn解析式;
(3)記Pn=n-1,設Tn=
log2(Sn-Pn)log2(Sn+1-Pn+1)-10.5
,對任意n∈N均有Tn<m成立,求出整數m的最小值.

查看答案和解析>>

科目:高中數學 來源:2011年上海市青浦區(qū)高考數學一模試卷(文理合卷)(解析版) 題型:解答題

設f(k)是滿足不等式log2x+log2≥2k(k∈N*)的自然數x的個數.
(1)求f(k)的函數解析式;
(2)Sn=f(1)+f(2)+…+f(n),求Sn
(3)設Pn=2n+1+n-3,由(2)中Sn及Pn構成函數Tn,,求Tn的最小值與最大值.

查看答案和解析>>

同步練習冊答案