(2012年高考湖北卷理科21)(本小題滿分13分)
設A是單位圓x2+y2=1上的任意一點,i是過點A與x軸垂直的直線,D是直線i與x軸的交點,點M在直線l上,且滿足丨DM丨=m丨DA丨(m>0,且m≠1)。當點A在圓上運動時,記點M的軌跡為曲線C。
(I)求曲線C的方程,判斷曲線C為何種圓錐曲線,并求焦點坐標;
(Ⅱ)過原點且斜率為k的直線交曲線C于P、Q兩點,其中P在第一象限,它在y軸上的射影為點N,直線QN交曲線C于另一點H,是否存在m,使得對任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,請說明理由。
科目:高中數(shù)學 來源: 題型:
(2012年高考(湖北文))設,則“”是“”的 ( 。
A.充分條件但不是必要條件, B.必要條件但不是充分條件
C.充分必要條件 D.既不充分也不必要的條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(2012年高考湖北卷理科14)如圖,雙曲線的兩頂點為A1,A2,虛軸兩端點為B1,B2,兩焦點為F1,F(xiàn)2.若以A1A2為直徑的圓內(nèi)切于菱形F1B1F2B2,切點分別為A,B,C,D.則
(Ⅰ)雙曲線的離心率e=______;
(Ⅱ)菱形F1B1F2B2的面積S1與矩形ABCD的面積S2的比值_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com