如圖,正方體中, 的中點為,的中點為,則異
面直線所成的是(  )
A.B.C.D.
D
解:取AA’的中點E,連接BE,EN
BE∥NC,∴異面直線B′M和CN所成角就是直線BE與直線B’M所成角
根據(jù)△ABE≌△B’MB可得BE⊥B’M
∴異面直線B′M和CN所成角為90°
故答案為90°.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,在正方體中,E 是的中點

(1)求直線 BE 和平面所成的角的正弦值,
(2)在上是否存在一點 F,使從平面?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)如圖,在三棱柱中,
每個側(cè)面均為正方形,為底邊的中點,為側(cè)棱的中點.
(Ⅰ)求證:∥平面;
(Ⅱ)求證:平面;
(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
一個四棱錐的三視圖如圖所示,E為側(cè)棱PC上一動點。

(1)畫出該四棱錐的直觀圖,并指出幾何體的主要特征(高、底等).
(2)點在何處時,面EBD,并求出此時二面角平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,直線平面,垂足為,正四面體的棱長為4,在平面內(nèi),
是直線上的動點,則當的距離為最大時,正四面體在平面上的射影面
積為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知二面角的大小為,點上,,,,,則異面直線所成角的余弦值為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

..(本題滿分12分) 本題共有2個小題,第1小題滿分6分,第2小題滿分6分.
(理)如圖,已知矩形的邊與正方形所在平面垂直,,是線段的中點。
(1)求證:平面
(2)求二面角的大小。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知直線、不重合,平面、不重合,下列命題正確的是  (   )
A.若,,則
B.若,則
C.若,則
D.若,則

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知平面ABC,,AC=CB=AD=2,E是DC的中點,F(xiàn)是AB的中點。
(1)證明:;
(2)求二面角C—DB—A的正切值。

查看答案和解析>>

同步練習冊答案