如圖,正方體
中,
的中點為
,
的中點為
,則異
面直線
與
所成的是( )
解:取AA’的中點E,連接BE,EN
BE∥NC,∴異面直線B′M和CN所成角就是直線BE與直線B’M所成角
根據(jù)△ABE≌△B’MB可得BE⊥B’M
∴異面直線B′M和CN所成角為90°
故答案為90°.
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖所示,在正方體
中,E 是
的中點
(1)求直線 BE 和平面
所成的角的正弦值,
(2)在
上是否存在一點 F,使從
平面
?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分14分)如圖,在三棱柱
中,
每個側(cè)面均為正方形,
為底邊
的中點,
為側(cè)棱
的中點.
(Ⅰ)求證:
∥平面
;
(Ⅱ)求證:
平面
;
(Ⅲ)求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)
一個四棱錐的三視圖如圖所示,E為側(cè)棱PC上一動點。
(1)畫出該四棱錐的直觀圖,并指出幾何體的主要特征(高、底等).
(2)點
在何處時,
面EBD,并求出此時二面角
平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖,直線
平面
,垂足為
,正四面體
的棱長為4,
在平面
內(nèi),
是直線
上的動點,則當
到
的距離為最大時,正四面體在平面
上的射影面
積為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知二面角
的大小為
,點
棱
上,
,
,
,
,
,則異面直線
與
所成角的余弦值為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
..(本題滿分12分) 本題共有2個小題,第1小題滿分6分,第2小題滿分6分.
(理)如圖,已知矩形
的邊
與正方形
所在平面垂直,
,
,
是線段
的中點。
(1)求證:
平面
;
(2)求二面角
的大小。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知直線
、
、
不重合,平面
、
不重合,下列命題正確的是 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知
平面ABC,
,AC=CB=AD=2,E是DC的中點,F(xiàn)是AB的中點。
(1)證明:
;
(2)求二面角C—DB—A的正切值。
查看答案和解析>>