17、已知圓C1:(X+1)2+(y-1)2=1,圓C2與圓C1關(guān)于直線X-Y-1=0對稱,則圓C2的方程為
(x-2)2+(y+2)2=1
分析:在圓C2上任取一點(diǎn)(x,y),求出此點(diǎn)關(guān)于直線X-Y-1=0的對稱點(diǎn),則此對稱點(diǎn)在圓C1上,再把對稱點(diǎn)坐標(biāo)代入
圓C1的方程,化簡可得圓C2的方程.
解答:解:在圓C2上任取一點(diǎn)(x,y),
則此點(diǎn)關(guān)于直線X-Y-1=0的對稱點(diǎn)(y+1,x-1)在圓C1:(X+1)2+(y-1)2=1上,
∴有(y+1+1)2+(x-1-1)2=1,
即 (x-2)2+(y+2)2=1,
∴答案為(x-2)2+(y+2)2=1.
點(diǎn)評:本題考查一曲線關(guān)于一直線對稱的曲線方程的求法:在圓C2上任取一點(diǎn)(x,y),則此點(diǎn)關(guān)于直線X-Y-1=0的對稱點(diǎn)(y+1,x-1)在圓C1上.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

5、已知圓C1:(x+1)2+(y-1)2=1,圓C2與圓C1關(guān)于直線x-y-1=0對稱,則圓C2的方程為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓c1:(x+1)2+y2=8,點(diǎn)c2(1,0),點(diǎn)Q在圓C1上運(yùn)動,QC2的垂直一部分線交QC1于點(diǎn)P.
(I)求動點(diǎn)P的軌跡W的方程;
(II)過點(diǎn)S(0,-
13
)且斜率為k的動直線l交曲線W于A、B兩點(diǎn),在y軸上是否存在定點(diǎn)D,使以AB為直徑的圓恒過這個點(diǎn)?若存在,求出D的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C1:(x+1)2+y2=8,點(diǎn)C2(1,0),點(diǎn)Q在圓C1上運(yùn)動,QC2的垂直平分線交QC1于點(diǎn)P.
(Ⅰ) 求動點(diǎn)P的軌跡W的方程;
(Ⅱ) 設(shè)M,N是曲線W上的兩個不同點(diǎn),且點(diǎn)M在第一象限,點(diǎn)N在第三象限,若
OM
+2
ON
=2
OC1
,O為坐標(biāo)原點(diǎn),求直線MN的斜率k;
(Ⅲ)過點(diǎn)S(0,-
1
3
)
且斜率為k的動直線l交曲線W于A,B兩點(diǎn),在y軸上是否存在定點(diǎn)D,使以AB為直徑的圓恒過這個點(diǎn)?若存在,求出D的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C1:(x-1)2+y2=1;圓C2:x2+(y+2)2=1,則圓C1與C2的位置關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C1:(x+1)2+(y-1)2=1,圓C2與圓C1關(guān)于直線x-y-2=0對稱;
(1)求圓C2的方程,
(2)過點(diǎn)(2,0)作圓C2的切線l,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案