(x-
1
x
)6
的展開式的中間一項是
 
考點:二項式系數(shù)的性質(zhì)
專題:二項式定理
分析:據(jù)二項展開式的項數(shù)取決于指數(shù),先求出展開式的系數(shù),判斷出中間項,利用二項展開式的通項公式求出中間項的二項式系數(shù).
解答: 解:(x-
1
x
)
6
的展開式中共有7項,
∴中間一項為第4項,
∴中間項為C63x3-
1
x
3=-20.
故答案為:-20;
點評:本題考查二項式定理的應(yīng)用,解決二項展開式的特定項問題利用二項展開式的通項公式,注意二項式系數(shù)與項的系數(shù)的區(qū)別.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,B,C所對的邊分別為a,b,c,cosA=
3
5
,b=5
3
,B=
π
3
,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若在(x+1)4(ax-1)2的展開式中x的系數(shù)是6,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,E為AC上一點,且
AC
=4
AE
,P為BE上一點,且滿足
AP
=m
AB
+n
AC
(m>0,n>0),則
1
m
+
1
n
取最小值時,向量
a
=(m,n)
的模為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若將函數(shù)y=sin2x的圖象向右平移φ(φ>0)個單位,得到的圖象關(guān)于直線x=
π
6
對稱,則φ的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足約束條件
y-a≥0
x-5y+10≥0
x+y-8≤0
,且目標(biāo)函數(shù)z=2x-5y的最小值是-10,則a的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)右頂點與右焦點的距離為
3
-1,短軸長為2
2
,橢圓方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=
2
+t
(1-
2
t)2
,則|z|=( 。
A、2
B、
2
3
3
C、
3
3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x+φ),其中f(x)≤|f(
π
6
)|對x∈R恒成立,且f(
π
2
)<f(π),則f(x)的單調(diào)遞增區(qū)間是( 。
A、[kπ+
π
6
,kπ+
3
](k∈Z)
B、[kπ,kπ+
π
2
](k∈Z)
C、[kπ-
π
3
,kπ+
π
6
](k∈Z)
D、[kπ-
π
2
,kπ](k∈Z)

查看答案和解析>>

同步練習(xí)冊答案