【題目】如圖,在以、、為頂點(diǎn)的五面體中,平面平面,,四邊形為平行四邊形,且.

(1)求證:;

(2)若,直線與平面所成角為,求平面與平面所成銳二面角的余弦值.

【答案】(1)見解析;(2).

【解析】試題分析:

(1)過,連接,由面面垂直的性質(zhì)可得平面,.,,為等腰直角三角形,據(jù)此可得平面,.

(2)以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,由題設(shè)可得平面的法向量為,平面的法向量為,則銳二面角的余弦值為 .

試題解析:

(1)過,連接,由平面平面,得平面,因此.

,,

,,

由已知為等腰直角三角形,因此,又

平面,.

(2),平面,平面平面,

∵平面平面,,

由(1)可得,,兩兩垂直,以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,由題設(shè)可得,進(jìn)而可得,,,,

設(shè)平面的法向量為,則,即

可取,

設(shè)平面的法向量為,則,即,

可取

,

∴二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=,若g(x)=f(x)-a恰好有3個(gè)零點(diǎn),則a的取值范圍為( 。

A. B. C. D.

【答案】D

【解析】

恰好有3個(gè)零點(diǎn), 等價(jià)于的圖象有三個(gè)不同的交點(diǎn),

作出的圖象,根據(jù)數(shù)形結(jié)合可得結(jié)果.

恰好有3個(gè)零點(diǎn),

等價(jià)于有三個(gè)根,

等價(jià)于的圖象有三個(gè)不同的交點(diǎn),

作出的圖象,如圖,

由圖可知,

當(dāng)時(shí),的圖象有三個(gè)交點(diǎn),

即當(dāng)時(shí),恰好有3個(gè)零點(diǎn),

所以的取值范圍是,故選D.

【點(diǎn)睛】

本題主要考查函數(shù)的零點(diǎn)與分段函數(shù)的性質(zhì),屬于難題. 函數(shù)的性質(zhì)問題以及函數(shù)零點(diǎn)問題是高考的高頻考點(diǎn),考生需要對(duì)初高中階段學(xué)習(xí)的十幾種初等函數(shù)的單調(diào)性、奇偶性、周期性以及對(duì)稱性非常熟悉;另外,函數(shù)零點(diǎn)的幾種等價(jià)形式:函數(shù)的零點(diǎn)函數(shù)軸的交點(diǎn)方程的根函數(shù)的交點(diǎn).

型】單選題
結(jié)束】
13

【題目】設(shè)集合A={0,log3(a+1)},B={a,a+b}若A∩B={1},則b=______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=k(x﹣m)與拋物線y2=2px(p>0)交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),OA⊥OB,OD⊥AB于D,點(diǎn)D在曲線x2+y2﹣4x=0上,則p=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)存在兩個(gè)極值點(diǎn)且滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)y=f(x)滿足:對(duì)y=f(x)圖象上任意點(diǎn)P(x1 , f(x1)),總存在點(diǎn)P′(x2 , f(x2))也在y=f(x)圖象上,使得x1x2+f(x1)f(x2)=0成立,稱函數(shù)y=f(x)是“特殊對(duì)點(diǎn)函數(shù)”,給出下列五個(gè)函數(shù):
①y=x1
②y=log2x;
③y=sinx+1;
④y=ex﹣2;
⑤y=
其中是“特殊對(duì)點(diǎn)函數(shù)”的序號(hào)是(寫出所有正確的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=cos(2x-).

(1)利用“五點(diǎn)法”,完成以下表格,并畫出函數(shù)fx)在一個(gè)周期上的圖象;

(2)求函數(shù)fx)的單調(diào)遞減區(qū)間和對(duì)稱中心的坐標(biāo);

(3)如何由y=cosx的圖象變換得到fx)的圖象.

2x-

0

π

x

fx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐P-ABCD中,PBC為正三角形,AB⊥平面PBC,ABCD,AB=DC .

(1)求證:AE∥平面PBC;

(2)求證:AE⊥平面PDC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,多面體ABCDEF中,四邊形ABCD是矩形,EF∥AD,F(xiàn)A⊥面ABCD,AB=AF=EF=1,AD=2,AC交BD于點(diǎn)P

(1)證明:PF∥面ECD;
(2)求二面角B﹣EC﹣A的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分)已知圓有以下性質(zhì):

過圓上一點(diǎn)的圓的切線方程是.

為圓外一點(diǎn),過作圓的兩條切線,切點(diǎn)分別為,則直線的方程為.

若不在坐標(biāo)軸上的點(diǎn)為圓外一點(diǎn),過作圓的兩條切線,切點(diǎn)分別為,則垂直,即,且平分線段.

(1)類比上述有關(guān)結(jié)論,猜想過橢圓上一點(diǎn)的切線方程(不要求證明);

(2)過橢圓外一點(diǎn)作兩直線,與橢圓相切于兩點(diǎn),求過兩點(diǎn)的直線方程;

(3)若過橢圓外一點(diǎn)不在坐標(biāo)軸上)作兩直線,與橢圓相切于兩點(diǎn),求證:為定值,且平分線段.

查看答案和解析>>

同步練習(xí)冊答案