如圖,是直三棱柱,為直角,點(diǎn)、分別是的中點(diǎn),若,則所成角的余弦值是(    )

A.            B.            C.            D.

 

【答案】

D

【解析】

試題分析:先取BC的中點(diǎn)D,連接D1F1,F(xiàn)1D,將BD1平移到F1D,則∠DF1A就是異面直線BD1與AF1所成角,在△DF1A中利用余弦定理求出此角即可.

解:取BC的中點(diǎn)D,連接D1F1,F(xiàn)1D,∴D1B∥D1F,∴∠DF1A就是BD1與AF1所成角設(shè)BC=CA=CC1=2,則AD= ,AF1=,DF1=,在△DF1A中,cos∠DF1A=,故選D

考點(diǎn):異面直線所成的角

點(diǎn)評(píng):本小題主要考查異面直線所成的角,考查空間想象能力、運(yùn)算能力和推理論證能力,屬于基礎(chǔ)題.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在直三棱柱ABC-A1B1C1中,底面為直角三角形,∠ABC=90°,AC=6,BC=CC1=
2
,P是BC1上一動(dòng)點(diǎn),則CP+PA1的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=AA1=2,D是AB的中點(diǎn).
(1)求AC1與平面B1BCC1所成角的正切值;
(2)求證:AC1∥平面B1DC;
(3)已知E是A1B1的中點(diǎn),點(diǎn)P為一動(dòng)點(diǎn),記PB1=x.點(diǎn)P從E出發(fā),沿著三棱柱的棱,按照E→A1→A的路線運(yùn)動(dòng)到點(diǎn)A,求這一過(guò)程中三棱錐P-BCC1的體積表達(dá)式V(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖①,在直三棱柱ABC-A1B1C1中,BA=BC=2,∠ABC=90°,異面直線A1B與AC成60°的角,點(diǎn)O、E分別是棱AC和BB1的中點(diǎn),點(diǎn)F是棱B1C1上的動(dòng)點(diǎn).
(Ⅰ)求異面直線A1E與OF所角的大。
(Ⅱ)求二面角B1-A1C-C1的大;
(Ⅲ)設(shè)O1為A1C1的中點(diǎn),如圖②,將此直三棱柱ABC-A1B1C1繞直線O1O旋轉(zhuǎn)一周,線段BC1旋轉(zhuǎn)后所得圖形所得必定是
 
.(只需填上你認(rèn)為正確的選項(xiàng),不必證明)
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆四川省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

如圖,是直三棱柱,,點(diǎn)、分別是,的中點(diǎn),若,則所成角的余弦值為            

 

查看答案和解析>>

同步練習(xí)冊(cè)答案