若(x-
a
x2
6式的常數(shù)項(xiàng)為60,則常數(shù)a的值為
 
分析:利用二項(xiàng)展開式的通項(xiàng)公式求出通項(xiàng),令x的指數(shù)等于0,求出常數(shù)項(xiàng),列出方程求出a.
解答:解:展開式的通項(xiàng)為Tr+1=(-
a
)
r
C
r
6
x6-3r

令6-3r=0得r=2
所以展開式的常數(shù)項(xiàng)為aC62=60
解得a=4
故答案為:4
點(diǎn)評(píng):本題考查利用二項(xiàng)展開式的通項(xiàng)公式解決二項(xiàng)展開式的特定項(xiàng)問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三次函數(shù)f(x)=x3+ax2-6x+b,a、b為實(shí)數(shù),f(0)=1,曲線y=f(x)在點(diǎn)(1,f(1))處切線的斜率為-6.
(1)求函數(shù)f(x)的解析式;
(2)若f(x)≤|2m-1|對(duì)任意的x∈(-2,2)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某地西紅柿上市時(shí)間僅能持續(xù)5個(gè)月,預(yù)測(cè)上市初期和后期會(huì)因供不應(yīng)求使價(jià)格呈連續(xù)上漲勢(shì)態(tài),而中期又將出現(xiàn)供大于求使價(jià)格連續(xù)下跌.現(xiàn)有三種價(jià)格模擬函數(shù):①f(x)=a•bx,②f(x)=ax2+bx+1,③f(x)=x(x-b)2+a,(以上三式中a,b均是不為零的常數(shù),且b>1)
(1)為了準(zhǔn)確研究其價(jià)格走勢(shì),應(yīng)選擇哪種價(jià)格模擬函數(shù),為什么?
(2)若f(0)=4,f(2)=6,求出所選函數(shù)f(x)的解析式(注:函數(shù)的定義域是[0,5]).其中x=0表示8月1日,x=1表示9月1日,…,以此類推;為保證該地的經(jīng)濟(jì)收益,當(dāng)?shù)卣?jì)劃在價(jià)格下跌期間積極拓寬外銷,請(qǐng)你預(yù)測(cè)該西紅柿將在哪幾個(gè)月份內(nèi)價(jià)格下跌.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(x1,y1),Q(x2,y2)(x1≠x2)是函數(shù)f(x)=x3+ax2+bx+c的圖象上的兩點(diǎn),若對(duì)于任意實(shí)數(shù)x1,x2,當(dāng)x1+x2=0時(shí),以P,Q為切點(diǎn)分別作函數(shù)f(x)的圖象的切線,則兩切線必平行,并且當(dāng)x=1時(shí)函數(shù)f(x)取得極小值1.
(1)求函數(shù)f(x)的解析式;
(2)若M(t,g(t))是函數(shù)g(x)=f(x)+3x-3(1≤x≤6)的圖象上的一點(diǎn),過(guò)M作函數(shù)g(x)圖象的切線,切線與x軸和直線x=6分別交于A,B兩點(diǎn),直線x=6與x軸交于C點(diǎn),求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:山東 題型:填空題

若(x-
a
x2
6式的常數(shù)項(xiàng)為60,則常數(shù)a的值為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案