P為雙曲線
x2
4
-
y2
3
=1右支上一點,F(xiàn)為雙曲線C的左焦點,點A(0,3)則|PA|+|PF|的最小值為
 
考點:雙曲線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)雙曲線的定義,設雙曲線的右焦點,將|PA|+|PF|轉(zhuǎn)化為|PA|+|PE|+4,即可得到結論.
解答: 解:由雙曲線
x2
4
-
y2
3
=1的方程可知a=2,設右焦點為E,
則E(
7
,0)
則由雙曲線的定義可得|PF|-|PE|=2a=4,
即|PF|=4+|PE|,
|PA|+|PF|=|PA|+|PE|+4≥|AE|+4=
(
7
)2+32
+4=
16
+4=4+4
=8,
當且僅當A,P,E三點共線時取等號.
故答案為:8
點評:本題主要考查雙曲線的定義及應用,利用三點共線是解決本題的關鍵,結合數(shù)形結合是基本方法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

正方體ABCD─A1B1C1D1中,與側面對角線AD1成異面直線的棱共有
 
條.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過點(2,3)且垂直于直線2x-y+6=0的直線方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

y=x+ln(x=1)在x=0處的切線方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=log2(x-1)+
4-2x
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在[-4,+∞)上的單調(diào)增函數(shù),且對于一切實數(shù)x,不等式f(cosx-b2)≥f(sin2x-b-3)恒成立,則實數(shù)b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log 
1
2
m-cosx
3+cosx
)在R上的值域為[-1,1],則實數(shù)m的值為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線2x-y+1=0不經(jīng)過( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題正確的是( 。
A、a∥b,a⊥α⇒a⊥b
B、a⊥α,b⊥α⇒a∥b
C、a⊥α,a⊥b⇒b∥α
D、a∥α,a⊥b⇒b⊥α

查看答案和解析>>

同步練習冊答案