分析 求兩個曲線的交點,利用定積分的幾何意義求區(qū)域面積.
解答 解:將y=x,代入y=2-x2得x=2-x2,解得x=-2或x=1,y=-2,y=1,
∴直線y=x和拋物線y=2-x2所圍成封閉圖形的面積如圖所示,
∴S=${∫}_{-2}^{1}$(2-x-x2)dx=(2x-$\frac{1}{2}x$-$\frac{1}{3}{x}^{3}$)|${\;}_{-2}^{1}$=(2-$\frac{1}{3}$-$\frac{1}{2}$)-(-4+$\frac{8}{3}$-2)=$\frac{9}{2}$,
故答案為:$\frac{9}{2}$.
點評 本題主要考查積分的幾何意義,聯(lián)立曲線方程求出積分的上限和下限是解決本題的關(guān)鍵,比較基礎(chǔ).
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 關(guān)于點($\frac{π}{12}$,0)對稱 | |
B. | 可由函數(shù)f(x)的圖象向右平移$\frac{π}{3}$個單位得到 | |
C. | 可由函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個單位得到 | |
D. | 可由函數(shù)f(x)的圖象向左平移$\frac{π}{3}$個單位得到 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{5}{4}$ | D. | $\frac{\sqrt{5}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-1≤x<2} | B. | {x|x<-1或1<x≤2} | C. | {x|x<-1} | D. | {x|x>2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i<101? | B. | i>101? | C. | i≤101? | D. | i≥101? |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com