已知函數(shù)的兩條切線PM、PN,切點(diǎn)

分別為MN.

(I)當(dāng)時(shí),求函數(shù)的單調(diào)遞均區(qū)間;

(II)設(shè)|MN|=,試求函數(shù)的表達(dá)式;

(III)在(II)的條件下,若對(duì)任意的正整數(shù),在區(qū)間內(nèi)總存在成立,求m的最大值.

解:(I)當(dāng)

 

.

則函數(shù)有單調(diào)遞增區(qū)間為                        

(II)設(shè)MN兩點(diǎn)的坐標(biāo)分別為、

同理,由切線PN也過(guò)點(diǎn)(1,0),得 (2)

由(1)、(2),可得的兩根,

                                                         

把(*)式代入,得

因此,函數(shù)

(III)易知上為增函數(shù),

 

由于m為正整數(shù),.

又當(dāng)

因此,m的最大值為6.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx2-
2axe
,(a∈R,e為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)求函數(shù)f(x)的遞增區(qū)間;
(Ⅱ)當(dāng)a=1時(shí),過(guò)點(diǎn)P(0,t)(t∈R)作曲線y=f(x)的兩條切線,設(shè)兩切點(diǎn)為P1(x1,f(x1)),P2(x2,f(x2))(x1≠x2),求證:x1+x2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+
tx
(t>0)
和點(diǎn)P(1,0),過(guò)點(diǎn)P作曲線y=f(x)的兩條切線PM,PN,切點(diǎn)分別為M(x1,y1),N(x2,y2).
(1)求證:x1,x2是關(guān)于x的方程x2+2tx-t=0的兩根;
(2)設(shè)|MN|=g(t),求函數(shù)g(t);
(3)在(2)的條件下,若在區(qū)間[2,16]內(nèi)總存在m+1個(gè)實(shí)數(shù)a1,a2,…,am+1,使得不等式g(a1)+g(a2)+…+g(am)<g(am+1)成立,求實(shí)數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知 f(x)=ax2+c的圖象經(jīng)過(guò)點(diǎn)(2,1),且在x=1處的切線方程是2x-4y-1=0
(1)求y=f(x)的解析式;
(2)點(diǎn)P是直線y=-1上的動(dòng)點(diǎn),自點(diǎn)P作函數(shù)f(x)的圖象的兩條切線PA、PB(點(diǎn)A、B為切點(diǎn)),求證直線AB經(jīng)過(guò)一個(gè)定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+
tx
(x>0)
,過(guò)點(diǎn)P(1,0)作曲線y=f(x)的兩條切線PM,PN,切點(diǎn)分別為M,N.
(1)當(dāng)t=2時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)設(shè)|MN|=g(t),試求函數(shù)g(t)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+
tx
(x>0)和點(diǎn)P(1,0),過(guò)點(diǎn)P作曲線y=f(x)的兩條切線PM,PN,切點(diǎn)分別為M(x1,y1),N(x2,y2).
(1)求證:x1,x2為關(guān)于x的方程x2+2tx-t=0的兩根;
(2)設(shè)|MN|=g(t),求函數(shù)g(t)的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案