給定橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),稱圓心在坐標(biāo)原點(diǎn)O,半徑為
a2+b2
的圓是橢圓C的“伴隨圓”. 若橢圓C的一個(gè)焦點(diǎn)為F2
2
,0
),其短軸上的一個(gè)端點(diǎn)到F2距離為
3

(Ⅰ)求橢圓C及其“伴隨圓”的方程;
(Ⅱ)若過點(diǎn)P(0,m)(m<0)的直線l與橢圓C只有一個(gè)公共點(diǎn),且l截橢圓C的“伴隨圓”所得的弦長為2
2
,求m的值.
分析:(Ⅰ)直接由橢圓C的一個(gè)焦點(diǎn)為F2
2
,0
),其短軸上的一個(gè)端點(diǎn)到F2距離為
3
,即可求橢圓C的方程及其“伴隨圓”方程;
(Ⅱ)設(shè)過點(diǎn)P且與橢圓有一個(gè)交點(diǎn)的直線l為:y=kx+m,代入橢圓方程,利用△=0,直線l截橢圓C的“伴隨圓”所得的弦長為2
2
,建立方程,即可求得結(jié)論.
解答:解:(Ⅰ)由題意得:a=
3
,半焦距c=
2

則b=1,所以橢圓C方程為
x2
3
+y2=1
,“伴隨圓”方程為x2+y2=4;
(Ⅱ)則設(shè)過點(diǎn)P且與橢圓有一個(gè)交點(diǎn)的直線l為:y=kx+m(m<0),
y=kx+m
x2
3
+y2=1
,整理得(1+3k2)x2+6kmx+(3m2-3)=0
所以△=(6km)2-4(1+3k2)(3m2-3)=0,解3k2+1=m2
又因?yàn)橹本l截橢圓C的“伴隨圓”所得的弦長為2
2

則有2
22-(
|m|
k2+1
)
2
=2
2
化簡得m2=2(k2+1)②
聯(lián)立①②解得,k2=1,m2=4,
所以k=±1,m=±2
因?yàn)閙<0,所以m=-2.
點(diǎn)評:本題考查圓錐曲線的直線的位置關(guān)系和綜合運(yùn)用,考查用代數(shù)方法研究圓錐曲線的性質(zhì)和數(shù)形結(jié)合的數(shù)學(xué)思想,考查解決問題的能力和運(yùn)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給定橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),稱圓心在坐標(biāo)原點(diǎn)O,半徑為
a2+b2
的圓是橢圓C的“伴隨圓”. 已知橢圓C的兩個(gè)焦點(diǎn)分別是F1(-
2
,0)、F2(
2
,0)
,橢圓C上一動(dòng)點(diǎn)M1滿足|
M1F1
|+|
M1F
2
|=2
3

(Ⅰ)求橢圓C及其“伴隨圓”的方程
(Ⅱ)試探究y軸上是否存在點(diǎn)P(0,m)(m<0),使得過點(diǎn)P作直線l與橢圓C只有一個(gè)交點(diǎn),且l截橢圓C的“伴隨圓”所得的弦長為2
2
.若存在,請求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定橢圓C:
x2
a2
+
y2
b2
=1(>b>0),將圓心在原點(diǎn)O、半徑是
a2+b2
的圓稱為橢圓C的“準(zhǔn)圓”.已知橢圓C的方程為
x2
3
+y2=1.
(Ⅰ)過橢圓C的“準(zhǔn)圓”與y軸正半軸的交點(diǎn)P作直線l1,l2,使得l1,l2與橢圓C都只有一個(gè)交點(diǎn),求l1,l2的方程;
(Ⅱ)若點(diǎn)A是橢圓C的“準(zhǔn)圓”與X軸正半軸的交點(diǎn),B,D是橢圓C上的兩相異點(diǎn),且BD⊥x軸,求
AB
AD
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黃埔區(qū)一模)給定橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,稱圓心在原點(diǎn)O、半徑是
a2+b2
的圓為橢圓C的“準(zhǔn)圓”.已知橢圓C的一個(gè)焦點(diǎn)為F(
2
,0)
,其短軸的一個(gè)端點(diǎn)到點(diǎn)F的距離為
3

(1)求橢圓C和其“準(zhǔn)圓”的方程;
(2)若點(diǎn)A是橢圓C的“準(zhǔn)圓”與x軸正半軸的交點(diǎn),B,D是橢圓C上的兩相異點(diǎn),且BD⊥x軸,求
AB
AD
的取值范圍;
(3)在橢圓C的“準(zhǔn)圓”上任取一點(diǎn)P,過點(diǎn)P作直線l1,l2,使得l1,l2與橢圓C都只有一個(gè)交點(diǎn),試判斷l(xiāng)1,l2是否垂直?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,稱圓心在坐標(biāo)原點(diǎn)O,半徑為
a2+b2
的圓是橢圓m的“伴隨圓”. 若橢圓C的一個(gè)焦點(diǎn)為F2(
2
,0)
,其短軸上的一個(gè)端點(diǎn)到F2距離為
3

(Ⅰ)求橢圓C及其“伴隨圓”的方程;
(Ⅱ)若過點(diǎn)P(0,m)(m<0)的直線l與橢圓C只有一個(gè)公共點(diǎn),且l截橢圓C的“伴隨圓”所得的弦長為2
2
,求m的值;
(Ⅲ)過橢圓C“伴橢圓”上一動(dòng)點(diǎn)Q作直線l1,l2,使得l1,l2與橢圓C都只有一個(gè)公共點(diǎn),試判斷直線l1,l2的斜率之積是否為定值,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案