一動(dòng)圓與已知:相外切,與:相內(nèi)切.
(Ⅰ)求動(dòng)圓圓心的軌跡C;
(Ⅱ)若軌跡C與直線y=kx+m (k≠0)相交于不同的兩點(diǎn)M、N,當(dāng)點(diǎn)A(0,1)滿足||=|| 時(shí),求m的取值范圍.
(Ⅰ)設(shè)動(dòng)圓圓心為M(x , y),半徑為R,則由題設(shè)條件,可知:
|MO1|=1+R ,|MO2|=(2)R, ∴|MO1|+|MO2|=2.
由橢圓定義知:M在以O(shè)1 ,O2為焦點(diǎn)的橢圓上,且,,
,故動(dòng)圓圓心的軌跡方程為.…………………4分
(Ⅱ)設(shè)P為MN的中點(diǎn),聯(lián)立方程組,
(3k2+1)x2+6mkx+3(m21)=0.
=12m2+36k2+12>0m2<3k2+1 …………………… (1) ………………6分
又
由⊥…………(2) ……………9分
.故.…………12分(
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
2 |
2 |
3 |
AM |
AN |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)一動(dòng)圓與已知:相外切,與:相內(nèi)切.
(Ⅰ)求動(dòng)圓圓心的軌跡C;
(Ⅱ)若A(0,1),軌跡C與直線y=kx+m (k≠0)相交于不同的兩點(diǎn)M、N,當(dāng)||=||時(shí),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)一動(dòng)圓與已知:相外切,與:相內(nèi)切.
(Ⅰ)求動(dòng)圓圓心的軌跡C;
(Ⅱ)若軌跡C與直線y=kx+m (k≠0)相交于不同的兩點(diǎn)M、N,當(dāng)點(diǎn)A(0,1)滿足||=|| 時(shí),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年寧夏銀川二中高考數(shù)學(xué)模擬試卷2(理科)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com