分析 (1)利用數(shù)列的遞推關(guān)系式求出首項,判斷數(shù)列是等比數(shù)列,然后求解通項公式.
(2)利用${b_n}={log_{\frac{1}{3}}}{a_n}$,化簡數(shù)列{anbn}通項公式,然后利用錯位相減法求和,推出結(jié)果即可.
解答 (本小題滿分10分)
解:(1)當n=1時,由2S1=1-a1得:${a_1}=\frac{1}{3}$.2Sn=1-an(n∈N*).
可得2Sn-1=1-an-1(n∈N*).
兩式相減可得:an=$\frac{1}{3}$an-1 n≥2,
∴數(shù)列{an}是等比數(shù)列,首項為$\frac{1}{3}$,公比為$\frac{1}{3}$,
∴an=$\frac{1}{{3}^{n}}$;
(2)證明:∵${a_n}=\frac{1}{3^n}$(n∈N*),∴${b_n}={log_{\frac{1}{3}}}{a_n}={log_{\frac{1}{3}}}{({\frac{1}{3}})^n}=n$.
∴${a_n}{b_n}=\frac{n}{3^n}$∴${T_n}=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+…+\frac{n}{3^n}$;
∴$\frac{1}{3}{T_n}=\frac{1}{3^2}+\frac{2}{3^3}+…+\frac{n-1}{3^n}+\frac{n}{{{3^{n+1}}}}$
∴$\frac{2}{3}{T_n}=\frac{1}{3}+({\frac{1}{3^2}+\frac{1}{3^3}+…+\frac{1}{3^n}})-\frac{n}{{{3^{n+1}}}}=\frac{{\frac{1}{3}({1-\frac{1}{3^n}})}}{{1-\frac{1}{3}}}-\frac{n}{{{3^{n+1}}}}=\frac{1}{2}-\frac{2n+3}{{2×{3^{n+1}}}}$
∴${T_n}=\frac{3}{4}-\frac{2n+3}{{4×{3^n}}}<\frac{3}{4}$.
點評 本題考查數(shù)列的遞推關(guān)系式的應(yīng)用,數(shù)列求和,考查計算能力.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 15 | B. | 20 | C. | 25 | D. | 30 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若命題p為真命題,命題q為假命題,則命題“p∨(¬q)”為真命題 | |
B. | 命題“若a+b≠7,則a≠2或b≠5”為真命題 | |
C. | 命題p:?x>0,sinx>2x-1,則¬p為?x>0,sinx≤2x-1 | |
D. | 命題“若x2-x=0,則x=0或x=1”的否命題為“若x2-x=0,則x≠0且x≠1” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com