如圖,已知四棱錐P—ABCD的底面ABCD為等腰梯形,AB//CD,AC⊥DB,ACBD相交于點(diǎn)O,且頂點(diǎn)P在底面上的射影恰為O點(diǎn),又BO=2,PO=PB⊥PD.
(Ⅰ)求異面直線PDBC所成角的余弦值;
(Ⅱ)求二面角P—AB—C的大。
(Ⅲ)設(shè)點(diǎn)M在棱PC上,且,問為何值時(shí),PC⊥平面BMD.
(Ⅰ)(Ⅱ)45°(Ⅲ)



以O(shè)為原點(diǎn),OA,OB,OP分別為x,y,z軸建立如圖所示的空間直角坐標(biāo)系,則各點(diǎn)坐標(biāo)為O(0,0,0),A(2,0,0),B(0,2,0),C(-1,0,0),D(0,-1,0),P(0,0,).
(1),


故直線PD與BC所成的角的余弦值為
(2)設(shè)平面PAB的一個(gè)法向量為
由于

的一個(gè)法向量

又二面角P—AB—C不銳角.
∴所求二面角P—AB—C的大小為45°
(3)設(shè)三點(diǎn)共線,

                     (1)
               (2)
由(1)(2)知  
   
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖3:在空間四邊形ABCD中,AC=AD,BC=BD,且E是CD的中點(diǎn).
(1)求證:平面ABE平面BCD;
(2)若F是AB的中點(diǎn),BC=AD,且AB=8,AE=10,求EF的長(zhǎng).
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知平行六面體的底面ABCD是菱形,且,(1)證明:;

(II)假定CD=2,,記面為α,面CBD為β,求二面角α -BD -β的平面角的余弦值;
(III)當(dāng)的值為多少時(shí),能使?請(qǐng)給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,側(cè)面PAD⊥底面ABCD,且△PAD為等腰直角三角形,∠APD=90°,
M為AP的中點(diǎn).
(Ⅰ)求證:DM∥平面PCB;                      
(Ⅱ)求直線AD與PB所成角;
(Ⅲ)求三棱錐P-MBD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,底面ABCD為矩形,PD⊥底面ABCD,E是AB上一點(diǎn),PE⊥EC.
已知PD=,CD=2,AE=,
(1)求證:平面PED⊥平面PEC
(2)求二面角E-PC-D的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐的底面是正方形,平面,上的點(diǎn).

(Ⅰ)求證:;
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在底面是直角梯形的四棱錐中,AD∥BC,∠ABC=90°,且,又PA⊥平面ABCD,AD=3AB=3PA=3a。
(I)求二面角P—CD—A的正切值;
(II)求點(diǎn)A到平面PBC的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知菱形的頂點(diǎn)在橢圓上,對(duì)角線所在直線的斜率為1.
(Ⅰ)當(dāng)直線過點(diǎn)時(shí),求直線的方程;
(Ⅱ)當(dāng)時(shí),求菱形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,一條直角走廊寬為2米,F(xiàn)有一轉(zhuǎn)動(dòng)靈活的平板車,其平板面為矩形ABEF,它的寬為1米。直線EF分別交直線AC、BCM、N,過墻角DDPACP,DQBCQ;若平板車要想順利通過直角走廊,其長(zhǎng)度不能超過多少米?

查看答案和解析>>

同步練習(xí)冊(cè)答案